
 1

SystemTap and Java

1 Introduction ..2

2 Java probes..2

3 VM – stpd communication interface (CI) ..3

3.1 Data streaming interface..3

3.2 Communication interface transport..3

3.3 CI details...4

3.3.1 VM agent to stpd flow ...4

3.3.2 stpd to VM agent flow ...4

3.3.3 strings and optional data placement ...4

4 Compiler..4

4.1 Java probe syntax ..4

4.1.1 Java related structures..4

4.1.2 Methods ..5

4.1.3 Classes ..5

4.1.4 Exceptions...5

4.1.5 VM events...5

4.1.6 Threads..5

4.1.7 Garbage Collector..6

4.1.8 Monitors..6

4.2 Event information in Java probe ..6

5 Possibility to extend functionality ..7

5.1 Single Step event...7

6 Examples ...7

6.1 Garbage collector ..7

6.2 Java Probes & Kernel Probes Mix ...7

Appendix A ...8

Appendix B ...10

Appendix C ...11

 2

1 Introduction

Inspired by the SUN DTrace ability to provide insight information about running java applications we think

it makes sense to add this ability to the SystemTap as well. Basically we need a framework which allows

investigation of the behavior of underlying operating system combined with the insight information about

running Java applications. This can assist in identifying the underlying cause of a performance or functional

problem. SystemTap simplify gathering of information about Linux kernel and theoretically it is possible to

add support of the user applications. Current document describes our vision on how Java VM support could

be integrated into the SystemTap.

2 Java probes

We suggest adding a new Java probe into the SystemTap – it will be used to gather and process statistics for

Java applications and Virtual machines. This probe corresponds to the current ideology of the SystemTap

and is similar to the kernel probe for functions inside kernel. The difference is that we can’t directly

instrument a VM or Java application from SystemTap, but are able to do this with a cooperating VM agent.

This way allows us to track VM activity as well as the Java application. Then we could make a direct

communication between VM agent and Java probe using stpd daemon.

There are some JVM instrumentation interfaces: JVMTI, JVMPI, and JVMDI. Based on these interfaces one

can create software agents to monitor Java VMs and applications. VM agent is a module that gets

dynamically loaded into a VM at startup. The Java probes can be executed in the event callback functions of

the VM agent.

In general the communication scheme could look like:

1. Initialization

a. User executes Java application with VM agent

b. Than user runs ‘stap’ for Java probe compilation and execution.

c. Java probe sends message containing list of the interesting methods, classes, exceptions, etc to the

VM agent.

2. Processing

a. VM agent gets a control on a number of VM events (method enter, method exit, gc start, gc finish,

etc)

b. VM agent requests detailed information from VM using JNI/JVMTI/etc methods and passes it to the

Java probe. This information is wrapped into the event dependent structures.

c. Java probe gets a control after that and process information received from the VM agent.

 3

VMInit

VMStart

VMDeath

ClassLoad

ClassUnload

GCFinish

SingleStep

GCStart

VM agent

User space

...

Parse

parameters

received

from VM

Kernel space

Java probe Java probe

stpd

Communication

interface

Picture 1

Due to Java method naming the probe syntax is a bit more complex. Our suggestions about syntax are

described in “Compiler” part.

3 VM – stpd communication interface (CI)

3.1 Data streaming interface
We propose to use well-defined data streaming interface to set up the communication between VM agent

and stpd. There are a number of reasons that a data streaming interface is desirable for exposing Java probe

data to SystemTap. One key reason is that to maximize the extensibility of Java probes, we wish to ensure

that we can leverage existing instrumentation technologies provided by VM vendors and other open source

projects. As an example, Eclipse/TPTP includes a sophisticated “probekit” technology designed to enable

advanced byte code instrumentation. Leveraging this type of technology to create efficient Java Systemtap

probes is desirable, (and necessary for advanced, extensible java probes). A data streaming interface avoids

link issues and enables us to leverage these technologies.

3.2 Communication interface transport
CI could use any standard inter process communication protocol as a transport. There is a line of options,

including pipes, memory mapping and sockets. Which one should be chosen? This is an open question for a

moment. However, we know that the protocol should be streaming, fast, bi-directional, stable and well

known. It should also provide a way for a stpd to connect to the VM agent on a latter stage, the “listening”

 4

end in this case should be unique for each agent instance. Let us assume that we’re talking about unix

domain sockets.

3.3 CI details

3.3.1 VM agent to stpd flow

VM agent sends various events received from VM side to stpd. Each event structure is started with the

magic code to identify event type. The variable length data is encoded according to p. 3.3.3 and referred in

tables as ‘string’ and ‘argument’.

The names of methods, exceptions and classes are represented according to the JVMTI specification. For

instance:

java.lang.System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V

Ljava/lang/Object

Ljava/lang/Object

Various IDs are being sent to the stpd side “as is” without any conversion and are provided only as a service

information. Please note: there is no way to change any object/thread ID from the stpd side.

Please see the complete list of commands in the Appendix A.

3.3.2 stpd to VM agent flow

stpd sends service commands related to registered JavaProbes, SystemTap startup/shutdown, requests for

additional data, etc to the VM agent. stpd uses the commands listed in the Appending B to specify

methods/classes/exceptions of interest. They allow VM agent to drop most of the events from the VM and

process only a few of them. This filtering helps to dramatically reduce the system overhead.

Please refer to the Appending B for the complete list of commands.

3.3.3 strings and optional data placement

Method/classes names, arguments and return values have variable length in the stream, so we need to

provide the information about the length (or type) before the actual data to read this data successfully.

See Appendix C for details.

4 Compiler

4.1 Java probe syntax
SystemTap compiler should be extended to support Java probes. The fact that VM agent sends event-

dependent information should also be taken into account. For instance the ‘exception probe’ should be able

to get the information about the method which threw/caught an exception.

4.1.1 Java related structures

Every probe receives an event dependent structure described in the corresponding tapset. In fact this

structure could be an array and the tapset is used to make it more readable. We are not going to describe

these structures here because they depend on an event type as well as on a particular implementation of the

VM agent. For instance the basic implementation assumes getting the line number information from

jlocation, however we can also get the parameters and return values for the java-method-probe, stack

trace for exception-probe, etc using BCI (see 4.2). We expect the event dependent structures to evolve as a

wider range of Java events are exposed to SystemTap.

 5

4.1.2 Methods

Java probe starts with the keyword probe followed by a description of where to place the probe and the

script body to run when the probe executes. For instance, probe for java.lang.System.arraycopy

method can be written as:

probe java.method("java.lang.System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V").enter

{

 …

 script body

 …

}

Therefore, common semantic looks like:

probe java.method("METHOD_SIG").EVENT_TYPE

Where:

METHOD_SIG Signature of the method. It includes fully qualified method name and allows an asterisk

“*”, which means that resulting probe should care about all methods with matched

names.

EVENT_TYPE The type of event to catch. It can be enter/return/compile. This list could grow in

the future according to VM agent abilities. This part is optional, by default assumes

value enter.

4.1.3 Classes

The java.class probe is useful to track class-loading process.

probe java.class("CLASS_NAME").EVENT_TYPE

CLASS_NAME Fully qualified class name. Wildcard is allowed as well as in METHOD_SIG

EVENT_TYPE load - class is first loaded

prepare - class preparation is complete. Class fields, methods, and implemented

interfaces are available, and no code from the class has been executed

unload – class is unloaded by VM

4.1.4 Exceptions

The java.exception probe could be used to trace exception-related activity of Java application.

probe java.exception("EXCEPTION_NAME").EVENT_TYPE

EXCEPTION_NAME Fully qualified exception name. Wildcard is allowed

EVENT_TYPE thrown – exception is thrown

catch – a thrown exception is caught

4.1.5 VM events

These probes could be used to trace VM activity.

probe java.vm.EVENT_TYPE

EVENT_TYPE init – VM initialization is completed

death – VM is terminated

4.1.6 Threads

The java.thread probes could be used to trace thread events.

 6

probe java.thread.EVENT_TYPE

EVENT_TYPE start – thread started, no initial methods executed

end – thread is finished

4.1.7 Garbage Collector

The java.gc probe could be used to track garbage collector activity.

probe java.gc.EVENT_TYPE

EVENT_TYPE start – Garbage collector begins full cycle

finish – Full cycle is finished

4.1.8 Monitors

The java.monitor probe could be used to track Java programming language monitors.

probe java.monitor.EVENT_TYPE

EVENT_TYPE contended_enter - thread is attempting to enter a Java programming language

monitor already acquired by another thread

contended_entered - thread enters a Java programming language monitor after

waiting for it to be released by another thread

wait - thread is about to wait on an object

waited - thread finishes waiting on an object

While this details an initial set of events, there is significant opportunity for growth. Heap allocation &

collection events, finalization events, object tags, etc… Note that one may also want to have probe execution

make additional requests over the data interface.

4.2 Event information in Java probe
According to SystemTap ideology every probe should check method (exception, field, etc) name before

execution. For instance:

probe java.method("java.lang.System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V")

This probe should check if full method signature equals to the specified (java.lang.arraycopy…). So

there are three ways:

1. VM agent catches JVMTI_EVENT_METHOD_ENTRY event and executes every java probe. Than every

probes make this check itself.

2. VM agent catches JVMTI_EVENT_METHOD_ENTRY event and tries to find method name in the list

sent by java probes. If it’s found then VM agent calls corresponding probe.

3. VM agent doesn’t catch JVMTI_EVENT_METHOD_ENTRY but instruments interesting methods using

BCI (Bytecode Instrumentation). In this case the list of these methods also required for VM agent.

The first and the second ways use JVMTI events to start method entry probe, and could be used for simple

tracking of which method were called during application execution – they do not provide an ability to track

parameter values passed to the method etc. These ways could be used in a very simple java probes were

having such information is unnecessary. Both the first and the second ways require additional events

filtering either on the probe or on the agent side. The first way is also considerably slow and puts additional

load on I/O interfaces between the agent and a probe and is less applicable to our needs.

The second way is easier than the third one, but bytecode instrumentation (BCI) is a most flexible way to

deal with method events as it makes parameter extraction as well as other more complex analysis possible.

 7

Note that some JVMs choose not to implement JVMTI_EVENT_METHOD_ENTRY. They do this because

the preferred method to extract this type of information is using BCI. This places additional overhead on the

VM Agent developer as BCI is more complex than using basic JVMTI_EVENTs. For advanced, portable,

agents that perform BCI, leveraging existing, open source BCI interfaces such as those within Eclipse/TPTP

is desirable. This is because reinventing a sophisticated BCI framework within SystemTap would be

inefficient. A VM agent leveraging Eclipse BCI technology can expose Java probe information to Java

probes to SystemTap stpd via the communication interface.

Both ways are based on information received by VM agent from java probe. Java probe should send

methods-to-be-probed list to the VM agent at the Initialization phase (as described in “Java probes” part). In

our example the probe should send to the VM agent the following information:

java.lang.System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V

5 Possibility to extend functionality

5.1 Single Step event
It is possible to use Single Step callback provided by JVMTI specification to extend number of events. A

single step event is generated whenever a thread reaches a new location. Typically, single step events

represent the completion of one VM instruction. For example it’s possible to implement custom event

handler like ‘executed bytecode aastore’ or so on. In this case JVMTI agent should analyze current state of

the VM on every call and execute suitable probe. Unfortunately it’s very SLOW. The second issue – it’s a

VM-dependent feature, because some implementations may define locations differently. Anyway even if

VM doesn’t support Single Step feature at all then corresponding probes just will not be executed. So we

can consider this feature as ‘optional’.

6 Examples

6.1 Garbage collector
The following example demonstrates using Java probes to measure GC pause time and total GC time:

probe java.gc.start {

 t = gettimeofday_ms()

}

probe java.gc.finish {

 printf("time = %d\n", gettimeofday_ms() - t)

}

probe begin {

 tt = gettimeofday_ms()

}

probe end {

 printf("total time = %d\n", gettimeofday_ms() - tt)

}

global t, tt

6.2 Java Probes & Kernel Probes Mix

Imagine that we should investigate behavior of the java.io.BufferedWriter class.

We will use the following test written in Java:

 8

// test.java

import java.io.*;

public class test {

 public static void main(String[] args) {

 try {

 FileWriter caw = new FileWriter("test.tmp");

 BufferedWriter bos = new BufferedWriter(caw);

 for (int i = 0; i < 14000; i++)

 bos.write('a');

 bos.close();

 caw = new FileWriter("test.tmp");

 bos = new BufferedWriter(caw, 4096);

 for (int i = 0; i < 14000; i++)

 bos.write('x');

 bos.close();

 } catch (IOException e) {

 System.err.println("Unexpected IOException: " + e);

 }

 }

}

For debugging system calls we’ll use kernel probe:

probe syscall.write {

 if (execname() == "java")

 printf(" %s\n", argstr)

}

For profiling of the write method we’ll use the following Java probe:

probe java.method("java.io.BufferedWriter.write(Ljava/lang/String;)V").enter {

 printf("--- BufferedWriter.write.enter ---")

 t = gettimeofday_ms()

}

probe java.method("java.io.BufferedWriter.write(Ljava/lang/String;)V").return {

 printf("time = %d\n", gettimeofday_ms() - t)

 printf("--- BufferedWriter.write.return ---")

}

probe begin {

 tt = gettimeofday_ms()

}

probe end {

 printf("total time = %d\n", gettimeofday_ms() - tt)

}

global t, tt

An output allows us to evaluate an efficacy of the buffering. For instance “gij (GNU libgcj) version 4.0.0

20050519” always calls write with buffer size equals to 250 bytes and it doesn’t correlate with the buffer

size inside the BufferedWriter class.

Appendix A

Note: jthread, jobject are types defined in JVMTI/JNI specification.

MethodEnter event

Name Length Comment

Event code 1 (unsigned char) 0x80

Method name variable (string)

Thread ID sizeof(jthread)

Number of optional records 1 (unsigned char)

 9

Optional record (if any) Variable Optional data including method parameters in case

if agent has optional ability to pass them to the

probe. See Appendix C for details about optional

data placement.

MethodExit event

Name Length Comment

Event code 1 (unsigned char) 0x81

Method name variable (string)

Thread ID sizeof(jthread)

Popped by exception 1 (bool)

Return value variable (argument) See Appendix C for details about optional data

placement.

MethodCompile event

Name Length Comment

Event code 1 (unsigned char) 0x82

Method name variable (string)

Code size 4 (unsigned long)

Optional data Variable

ClassLoad event

Name Length Comment

Event code 1 (unsigned char) 0x83

Class name variable (string)

Thread ID 4 (unsigned long)

ClassPrepare event

Name Length Comment

Event code 1 (unsigned char) 0x84

Class name variable (string)

Thread ID sizeof(jthread)

ExceptionThrown event

Name Length Comment

Event code 1 (unsigned char) 0x85

Exception name variable (string)

Thread ID sizeof(jthread)

Method name variable (string)

ExceptionCatch event

Name Length Comment

Event code 1 (unsigned char) 0x86

Exception name variable (string)

Thread ID sizeof(jthread)

Method name variable (string)

 10

ThreadStarted event

Name Length Comment

Event code 1 (unsigned char) 0x87

Thread ID sizeof(jthread)

ThreadFinished event

Name Length Comment

Event code 1 (unsigned char) 0x88

Thread ID sizeof(jthread)

MonitorEnter event

Name Length Comment

Event code 1 (unsigned char) 0x89

Thread ID sizeof(jthread)

Object ID sizeof(jobject) Object ID passed to the probe only for tracking

purposes. For instance it is allow us to understand

how often object with specified ID used in

synchronized blocks.

MonitorEntered event

Name Length Comment

Event code 1 (unsigned char) 0x8A

Thread ID sizeof(jthread)

Object ID sizeof(jobject)

MonitorWait event

Name Length Comment

Event code 1 (unsigned char) 0x8B

Thread ID sizeof(jthread)

Object ID sizeof(jobject)

Timeout 4 (unsigned long)

MonitorWaited event

Name Length Comment

Event code 1 (unsigned char) 0x8C

Thread ID sizeof(jthread)

Object ID sizeof(jobject)

Timeout 4 (unsigned long)

Appendix B

RegisterMethod command

Name Length Comment

Command code 1 (unsigned char) 0x40

Method name/mask variable (string)

 11

RegisterClass command

Name Length Comment

Command code 1 (unsigned char) 0x41

Class name/mask variable (string)

RegisterException command

Name Length Comment

Command code 1 (unsigned char) 0x42

Exception name/mask variable (string)

GCEvents command

Name Length Comment

Command code 1 (unsigned char) 0x43

Enable bool

ThreadEvents command

Name Length Comment

Command code 1 (unsigned char) 0x44

Enable bool

MonitorEvent command

Name Length Comment

Command code 1 (unsigned char) 0x45

Enable bool

RequestForOptionalData command

Name Length Comment

Command code 1 (unsigned char) 0x46

Options mask 4 (unsigned long)

Appendix C

Strings placed into the stream as follow:

Name Length Comment

Length 4 (unsigned long)

Data specified by length

field

Optional data (methods arguments, return value, etc.):

Name Length Comment

Type 1 (unsigned char)

Data depends of type

