This is the mail archive of the gsl-discuss@sourceware.org mailing list for the GSL project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Possible small bug in Laguerre polynomial.


I have been evaluating Laguerre polynomials for large n and alpha = 0 for largish n on several platforms including i686-cygwin, x86_64-linux, powerpc-apple-darwin7.9.0 an it seems that I get bad results on all of them.

I am comparing with Mathematica. (I know, non-free and otherwise annoying.) They use high-precision arithmetic and I tend to trust their results.

I believe the error comes from switching to a hypergeometric expression rather than sticking with recursion at alpha=0.
I have found that staying with recursion works just fine at alpha = 0 for n = 50 or 100.


The special function testsuite is clean on all platforms when I make the one-character change.

Change line 288 of laguerre.c
from:
 else if(a > 0.0 || (x > 0.0 && a < -n-1)) {
to:
 else if(a >= 0.0 || (x > 0.0 && a < -n-1)) {


Ed Smith-Rowland


/* specfunc/laguerre.c
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman */

#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_laguerre.h>

#include "error.h"

/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/


/* based on the large 2b-4a asymptotic for 1F1
 * [Abramowitz+Stegun, 13.5.21]
 * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
 *
 * The second term (ser_term2) is from Slater,"The Confluent
 * Hypergeometric Function" p.73.  I think there may be an error in
 * the first term of the expression given there, comparing with AS
 * 13.5.21 (cf sin(a\pi+\Theta) vs sin(a\pi) + sin(\Theta)) - but the
 * second term appears correct.
 *
 */
static
int
laguerre_large_n(const int n, const double alpha, const double x,
                 gsl_sf_result * result)
{
  const double a = -n;
  const double b = alpha + 1.0;
  const double eta    = 2.0*b - 4.0*a;
  const double cos2th = x/eta;
  const double sin2th = 1.0 - cos2th;
  const double eps = asin(sqrt(cos2th));  /* theta = pi/2 - eps */
  const double pre_h  = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th;
  gsl_sf_result lg_b;
  gsl_sf_result lnfact;
  int stat_lg = gsl_sf_lngamma_e(b+n, &lg_b);
  int stat_lf = gsl_sf_lnfact_e(n, &lnfact);
  double pre_term1 = 0.5*(1.0-b)*log(0.25*x*eta);
  double pre_term2 = 0.25*log(pre_h);
  double lnpre_val = lg_b.val - lnfact.val + 0.5*x + pre_term1 - pre_term2;
  double lnpre_err = lg_b.err + lnfact.err + GSL_DBL_EPSILON * (fabs(pre_term1)+fabs(pre_term2));

  double phi1 = 0.25*eta*(2*eps + sin(2.0*eps));
  double ser_term1 = -sin(phi1);

  double A1 = (1.0/12.0)*(5.0/(4.0*sin2th)+(3.0*b*b-6.0*b+2.0)*sin2th - 1.0);
  double ser_term2 = -A1 * cos(phi1)/(0.25*eta*sin(2.0*eps));

  double ser_val = ser_term1 + ser_term2;
  double ser_err = ser_term2*ser_term2 + GSL_DBL_EPSILON * (fabs(ser_term1) + fabs(ser_term2));
  int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, ser_val, ser_err, result);
  result->err += 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val);
  return GSL_ERROR_SELECT_3(stat_e, stat_lf, stat_lg);
}


/* Evaluate polynomial based on confluent hypergeometric representation.
 *
 * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
 *
 * assumes n > 0 and a != negative integer greater than -n
 */
static
int
laguerre_n_cp(const int n, const double a, const double x, gsl_sf_result * result)
{
  gsl_sf_result lnfact;
  gsl_sf_result lg1;
  gsl_sf_result lg2;
  double s1, s2;
  int stat_f = gsl_sf_lnfact_e(n, &lnfact);
  int stat_g1 = gsl_sf_lngamma_sgn_e(a+1.0+n, &lg1, &s1);
  int stat_g2 = gsl_sf_lngamma_sgn_e(a+1.0, &lg2, &s2);
  double poly_1F1_val = 1.0;
  double poly_1F1_err = 0.0;
  int stat_e;
  int k;

  double lnpre_val = (lg1.val - lg2.val) - lnfact.val;
  double lnpre_err = lg1.err + lg2.err + lnfact.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);

  for(k=n-1; k>=0; k--) {
    double t = (-n+k)/(a+1.0+k) * (x/(k+1));
    double r = t + 1.0/poly_1F1_val;
    if(r > 0.9*GSL_DBL_MAX/poly_1F1_val) {
      /* internal error only, don't call the error handler */
      INTERNAL_OVERFLOW_ERROR(result);
    }
    else {
      /* Collect the Horner terms. */
      poly_1F1_val  = 1.0 + t * poly_1F1_val;
      poly_1F1_err += GSL_DBL_EPSILON + fabs(t) * poly_1F1_err;
    }
  }

  stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err,
                                    poly_1F1_val, poly_1F1_err,
                                    result);

  return GSL_ERROR_SELECT_4(stat_e, stat_f, stat_g1, stat_g2);
}


/* Evaluate the polynomial based on the confluent hypergeometric
 * function in a safe way, with no restriction on the arguments.
 *
 * assumes x != 0
 */
static
int
laguerre_n_poly_safe(const int n, const double a, const double x, gsl_sf_result * result)
{
  const double b = a + 1.0;
  const double mx = -x;
  const double tc_sgn = (x < 0.0 ? 1.0 : (GSL_IS_ODD(n) ? -1.0 : 1.0));
  gsl_sf_result tc;
  int stat_tc = gsl_sf_taylorcoeff_e(n, fabs(x), &tc);

  if(stat_tc == GSL_SUCCESS) {
    double term = tc.val * tc_sgn;
    double sum_val = term;
    double sum_err = tc.err;
    int k;
    for(k=n-1; k>=0; k--) {
      term *= ((b+k)/(n-k))*(k+1.0)/mx;
      sum_val += term;
      sum_err += 4.0 * GSL_DBL_EPSILON * fabs(term);
    }
    result->val = sum_val;
    result->err = sum_err + 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else if(stat_tc == GSL_EOVRFLW) {
    result->val = 0.0; /* FIXME: should be Inf */
    result->err = 0.0;
    return stat_tc;
  }
  else {
    result->val = 0.0;
    result->err = 0.0;
    return stat_tc;
  }
}



/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*/

int
gsl_sf_laguerre_1_e(const double a, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  {
    result->val = 1.0 + a - x;
    result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x));
    return GSL_SUCCESS;
  }
}

int
gsl_sf_laguerre_2_e(const double a, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(a == -2.0) {
    result->val = 0.5*x*x;
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    double c0 = 0.5 * (2.0+a)*(1.0+a);
    double c1 = -(2.0+a);
    double c2 = -0.5/(2.0+a);
    result->val  = c0 + c1*x*(1.0 + c2*x);
    result->err  = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * (1.0 + 2.0 * fabs(c2*x)));
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
}

int
gsl_sf_laguerre_3_e(const double a, const double x, gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(a == -2.0) {
    double x2_6  = x*x/6.0;
    result->val  = x2_6 * (3.0 - x);
    result->err  = x2_6 * (3.0 + fabs(x)) * 2.0 * GSL_DBL_EPSILON;
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else if(a == -3.0) {
    result->val = -x*x/6.0;
    result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
  else {
    double c0 = (3.0+a)*(2.0+a)*(1.0+a) / 6.0;
    double c1 = -c0 * 3.0 / (1.0+a);
    double c2 = -1.0/(2.0+a);
    double c3 = -1.0/(3.0*(3.0+a));
    result->val  = c0 + c1*x*(1.0 + c2*x*(1.0 + c3*x));
    result->err  = 1.0 + 2.0 * fabs(c3*x);
    result->err  = 1.0 + 2.0 * fabs(c2*x) * result->err;
    result->err  = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * result->err);
    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
    return GSL_SUCCESS;
  }
}


int gsl_sf_laguerre_n_e(const int n, const double a, const double x,
                           gsl_sf_result * result)
{
  /* CHECK_POINTER(result) */

  if(n < 0) {
    DOMAIN_ERROR(result);
  }
  else if(n == 0) {
    result->val = 1.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(n == 1) {
    result->val = 1.0 + a - x;
    result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x));
    return GSL_SUCCESS;
  }
  else if(x == 0.0) {
    double product = a + 1.0;
    int k;
    for(k=2; k<=n; k++) {
      product *= (a + k)/k;
    }
    result->val = product;
    result->err = 2.0 * (n + 1.0) * GSL_DBL_EPSILON * fabs(product) + GSL_DBL_EPSILON;
    return GSL_SUCCESS;
  }
  else if(x < 0.0 && a > -1.0) {
    /* In this case all the terms in the polynomial
     * are of the same sign. Note that this also
     * catches overflows correctly.
     */
    return laguerre_n_cp(n, a, x, result);
  }
  else if(n < 5 || (x > 0.0 && a < -n-1)) {
    /* Either the polynomial will not lose too much accuracy
     * or all the terms are negative. In any case,
     * the error estimate here is good. We try both
     * explicit summation methods, as they have different
     * characteristics. One may underflow/overflow while the
     * other does not.
     */
    if(laguerre_n_cp(n, a, x, result) == GSL_SUCCESS)
      return GSL_SUCCESS;
    else
      return laguerre_n_poly_safe(n, a, x, result);
  }
  else if(n > 1.0e+07 && x > 0.0 && a > -1.0 && x < 2.0*(a+1.0)+4.0*n) {
    return laguerre_large_n(n, a, x, result);
  }
//else if(a > 0.0 || (x > 0.0 && a < -n-1)) {
  else if(a >= 0.0 || (x > 0.0 && a < -n-1)) {
    gsl_sf_result lg2;
    int stat_lg2 = gsl_sf_laguerre_2_e(a, x, &lg2);
    double Lkm1 = 1.0 + a - x;
    double Lk   = lg2.val;
    double Lkp1;
    int k;

    for(k=2; k<n; k++) {
      Lkp1 = (-(k+a)*Lkm1 + (2.0*k+a+1.0-x)*Lk)/(k+1.0);
      Lkm1 = Lk;
      Lk   = Lkp1;
    }
    result->val = Lk;
    result->err = (fabs(lg2.err/lg2.val) + GSL_DBL_EPSILON) * n * fabs(Lk);
    return stat_lg2;
  }
  else {
    /* Despair... or magic? */
    return laguerre_n_poly_safe(n, a, x, result);
  }
}


/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/

#include "eval.h"

double gsl_sf_laguerre_1(double a, double x)
{
  EVAL_RESULT(gsl_sf_laguerre_1_e(a, x, &result));
}

double gsl_sf_laguerre_2(double a, double x)
{
  EVAL_RESULT(gsl_sf_laguerre_2_e(a, x, &result));
}

double gsl_sf_laguerre_3(double a, double x)
{
  EVAL_RESULT(gsl_sf_laguerre_3_e(a, x, &result));
}

double gsl_sf_laguerre_n(int n, double a, double x)
{
  EVAL_RESULT(gsl_sf_laguerre_n_e(n, a, x, &result));
}

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]