Locating System Problems Using Dynamic
Instrumentation

Vara Prasad, Jim Keniston
IBM
William Cohen, Frank Ch. Eigler, Martin Hunt
Red Hat, Inc.
Brad Chen
Intel

OLS 2005 1

Abstract

It is often difficult to diagnose complex problems without multiple rebuilds

and reboots. Even in a simple setup, the problem can touch various
layers of the application and operating system. Diagnosis is even more
difficult in complex, multi-tiered systems. As Linux is deployed in these
environments, it is becoming more important to have facilities to locate
and identify such problems.

Using the kprobes infrastructure, SystemTap is being developed to

dynamically instrument the kernel and user applications. SystemTap
instrumentation incurs low overhead when enabled, and zero overhead
when disabled. SystemTap provides facilities to define instrumentation
points in a high-level language, and to aggregate and analyze the
instrumentation data. Details of the SystemTap architecture and
implementation are presented, along with examples of solving problems
in the production environments.

OLS 2005

Agenda

OLS 2005

Introduction

Kprobes

Safety

Architecture

Details of the system
Examples

Status of the project
Conclusions

Problem Definition

OLS 2005

Kernel Developer: | wish | could add a debug statement
easily without going through the compile/build cycle.

Technical Support: How can | get this additional data that is
already available in the kernel easily and safely?

Application Developer: How can | improve the performance
of my application on Linux?

System Admin: Occasionally jobs take significantly longer
than usual to complete, or do not complete. Why?

Current Tools

* Examples: ps, netstat, vmstat, iostat, sar, strace, top, Itrace,
oprofile, /proc, LTT, etc.

* Drawbacks:
- Narrow focus, hence not suitable for system scope
~ Not flexible and configurable
- Many different tools and data sources but no easy way to
integrate the information
- Overhead even when not in use

OLS 2005 5

Motivation

OLS 2005

Ease of use: Provide an easy mechanism for dynamic
Instrumentation

Re-use: An instrumentation library for common tasks
Empower end users: A scripting language to get an insight
into the system

Infrastructure: A platform for debugging and analysis

Top to bottom: Provide a tool that helps to solve problems
from application layer to the h/w interface

SystemTap

* Atool to take a deeper look into a running system:
* Provides insight into system operation
* Assists in identifying causes of performance problems
* Simplifies building instrumentation

* Started January 2005

* Open Source project

* Active contributions from Red Hat, Intel, IBM and other

iIndividual developers

OLS 2005 7

Kprobes

* Kprobes is the foundation for SystemTap

* Probe Point: An address in the kernel for instrumentation

* Probe Handler: An instrumentation routine

* Replace the instruction at the probe points with a breakpoint
Intstruction

* When the breakpoint is hit, excecute the probe handler

* Execute the original instruction

* Continue at the next instruction following the breakpoint

OLS 2005 8

Kprobes Enhancements

* Jumper probes (jprobes):
* Useful in tracing function call entries
* Give access to function call arguments
* Return probes (Kretprobes):
* Facilitates tracing function return calls
* Fire when function returns
* Multiple probe handlers at a probe point:
* Allows different types of instrumentations
* Reentrant probes
* Scalability enhancements

OLS 2005 9

Kprobes Limitations

* No checking that probe point is at instruction boundary

* Kprobes-based code is hard to maintain and port due to
hard coding of addresses

* No library of probes for common tasks

* No convenient access to local variables

* Requires significant kernel knowledge

OLS 2005 10

SystemTap Safety Goals

OLS 2005

For use in production environment — Crash proof
Leverage existing tool chain
Leverage existing kernel code
Safe mode: Restricted functionality for production
environments
Guru mode: Full feature set for development environment
Static analyzer:

* Protection against translator bugs and user errors

* Detects illegal instructions and external references

11

Q redhat

SystemTap Overall Diagram

debug-info
ELF objects

D
XS
X5

BN

/kernel

Kprobes

relayfs

profiling

-
systemiap

/translator

parse

elaborate

translate

script libran
-l
CoC

I

~

build

load/run

runtime,
C tapsets
C > XD

T
X

>

store output

stop/unload

12

nrobe.ou

’_ redhat

Instrumentation Generation

{]
parse probe script
i L]
elaborate |« I
I

4

TapSet library

translate to C, compile

A 4

\)

load module, start probe

Y

extract output, unload

>

]

S probe kernel object

]

probe output

13

’_redhat_
Probe Scripting Language

awk -like scripting language
Simplified C-like syntax
Limited number of types:
64-bit numbers, strings, associative arrays, statistics
Auxiliary functions

Structured control statements, e.g.i f-t hen-el seandwhil e
loops

Safety features:
No dynamic memory allocation
No assembly or arbitrary C code
Types and type conversions limited

Limited pointer operations 14

’_ redhat

Elaboration Phase

Takes a user probe script and:
Preprocesses macros
Includes required script libraries

Resolves references to symbols in code and
Instrumentation support libraries

Uses DWARF2/3 debugging information to find:
Function entry location
Line number information

Global and local variables types and locations

15

’_ redhat

Translation Phase

Occurs after elaboration

Each script subroutine expanded to block of C
Generates calls into runtime library where needed
Produces code to insert and remove instrumentation

Generates .c file to be compiled into a kernel module

16

’_ redhat
Runtime Library

Provides:
Associative arrays (maps)
Per-cpu data types such as strings and counters
Statistics
Stack trace, register dump, symbol lookup
Safe copy from userspace
Output formatting
Assists with kernel-to-user-space transport

Could be used by C programmers to simplify writing kprobes-
and jprobes-based instrumentation

17

’_redhat_
Build and Load Phase

The “.c” file generated in the translation phase is built into a probe
module in the build phase

Module is loaded into the kernel
Compiler and runtime safety checks:
Infinite loops and recursion
Invalid variable access
Division by zero
Restricted access to kernel memory
Array bound checks

Version compatibility checks

18

Data Handling Phase

* Data Collection — Kernel Space
> During kernel execution, probes get activated
> Data collection stops when module gets unloaded
* Data Preprocessing — Kernel Space
> Simple Aggregation functions
* Data Transfer — Kernel to User Space
> Relayfs: Efficient and low overhead mechanism for data transfer
with per cpu buffering.
> Netlink for control channel
> Data generated by the probes is tagged for post processing
* Data Presentation — User Space
> Data is ordered and merged
> Merged data is formatted and presented to user
> Optionally raw data can be streamed for other performance

analysis tools
OLS 2005 19

Example End User Script

gl obal avg(reads);

probe kernel.syscall ("read") {

reads[$pnane] <<< byte count;
}

probe end {
print (reads,

"reads by process \"%s\": 9%C. Total bytes=%. Average: YA"));

How did we get the byte count variable in the above user script?

OLS 2005 20

TapSets

* A TapSet defines:
* Probe Points: a set of instrumentation points for a
particular subsystem
* Data values that are available at each probe point.
* Written by developers knowledgeable in the given area
* Tested and packaged with SystemTap
* TapSets are written using probe scripting language and C.
* Data values are exported by writing Handler Statement
Blocks (HSB)
* HSB's are used in generating the Kprobe handler code when
needed

OLS 2005 21

TapSet: Probe Point

* Probe points can be defined for kernel code locations in

various forms
> kernel . function("sys read").return
> kernel . function("context _swtch")

* Additional probe point definitions can be defined for:

® asynchronous events
>perfcounter("tlbm ss"). count (4000)

* watchpoints

OLS 2005 22

TapSet: Data Values

* Data values can be exported by writing HSB in SystemTap
scripting language.

export kernel.syscall ("read") =
kernel . function("sys_read")

{

file descriptor = $fd;

byt e count = $count;

filenane = get filenane fromfd(fd);
}

* file descriptor, byte count, fil enane are data
values that can be used by an end user script
* kernel.syscall (“read”) is defined an alias for the
sys_read() probe point
* $f d and $count are arguments of the sys_r ead() function
OLS 2005 23

TapSet: Data Values (Contd.)

export kernel.syscall("read") =
kernel . function("sys_read")

{

file descriptor = $fd;

byt e count = $count;

filenane = get _filenane fromfd(fd);
}

* Handler Statement Block can also make calls to “C”
functions e.g.get _filenane _from fd()

* Used for locking, or when calls to several other kernel
functions are needed

OLS 2005 24

’_redhat_
User Script: File Operations Statistics

gl obal opens;
gl obal avg(reads);
gl obal avg(wites);

probe kernel.syscall ("open") {
open[$pnane] += 1;

}

probe kernel.syscall ("read") {
reads[$pnane] <<< byte count;

}

probe kernel.syscall ("wite") {
write[$pnane] <<< byte count;

}

probe end {
print (opens, "%l opens by process \"%s\"");
print (reads,
"reads by process \"%s\": % . Total bytes=%. Average: YA"));
print(wites,
"wites by process \"%s\": % . Total bytes=%%. Average: YA");

} 25

’_redhat_
Probe Output: File Operations Statistics

$./stp iotask.stp
Press Control-C to stop.

3459 opens by process "soffice. bin"

reads by process "sshd": 1887. Total bytes=30916608. Average:
16384

reads by process "ooffice": 7. Total bytes=6799. Average: 971
reads by process "soffice": 34. Total bytes=90983. Average: 2675

reads by process "soffice.bin": 4693. Total bytes=7454020.
Aver age: 1588

wites by process "sshd": 1879. Total bytes=1002914. Average: 533

wites by process "soffice.bin": 24451. Total bytes=518726.
Aver age: 21

26

’_ redhat
User Script: smp _call_function

gl obal traces

probe kernel.function("snp_call_function")

{
traces[$pi d, $pnane, stack()] += 1;

}

probe end {
print(traces),;

}

27

’_ redhat
Probe Output: smp_call function

root# stp scf.stp

Press Control -C to stop.

Al l kprobes renoved

traces[4010, hal d, trace for 4010 (hal d)
Oxffffffff8011a551 : snp_call function+0x1/0x70
Oxffffffff80182c0c |nvaI|date_bdev+0xlc/0x40
Oxffffffff8019bcd48 : _ invalidate devi ce+tOx58/0x70
Oxffffffff80188f89 : check di sk change+0x39/ 0xa0
Oxffffffff80133c90 : default wake function+0x0/0x10
Oxffffffff802abeef : cdrom open+0xalOf/ 0xa60
Oxffffffff80133c90 : default wake function+0x0/0x10
Oxffffffff80132650 : finish task swtch+0x40/ 0x90
Oxffffffff80346bb9 : thread return+0x54/0x8b
Oxffffffff801419cd : _ nod ti mer+0x13d/ 0x150

] = 18

28

Contributions

* Kprobe (x86, x86 64, ppc64) kernel support — IBM
* Kprobe (ia64) — Intel

* Relayfs — IBM

* Safety — Intel

* Performance monitoring TapSet - Intel

* Translator — Red Hat

* Runtime — Red Hat

* Testing - All

OLS 2005 29

SystemTap Status

* Working to incorporate into RHEL4-U2 Fall 2005

* Kprobes: patches in mainline kernel (ia32, ia64, ppc64,
x86 64)

* Relayfs: patches in -mm tree

* Translator/Runtime: 80% complete

* Libdw, libelf: available as part of elfutils

* Tapsets: looking at specific kernel areas: system calls, time
keeping functions, virtual filesystem layer, etc.

OLS 2005 30

Future Work

* User-space probes

* Non-root use of the tools

* Instrumentation of various subsystems by experts
* Visualization tools

* Continuous tracing or flight recording

* Automate monitoring of the system to detect potential
performance degradation

OLS 2005 31

Further Information

* Website: http://sources.redhat.com/systemtap
* Mailing list: systemtap@sources.redhat.com

OLS 2005 32

http://sources.redhat.com/systemtap
mailto:systemtap@sources.redhat.com

Legally Speaking

* This work represents the view of the authors and does not
necessarily represent the view of their employers.

* IBM is a registered trademark of International Business
Machines Corporation in the United States and/or Other
Countries. Red Hat is a registered trade mark of Red Hat
Inc. Intel is a registered trade mark of Intel Corporation

Other company, product, and service names may be
trademarks or service marks of others.

OLS 2005 33

Backup slides

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do fork>:

push Y%ebp

push %edi

nov Yeax, Yedi

push Yesi

XOor %esi , Yesi

push %ebx

sub $0x24, Yesp

nov Yecx, Yebx

nov Yedx, Ox10(Yesp)

cal | 1bf 2 <do_f or k+0x12>
nov Yeax, Yebp

t est Yebp, Yebp

novV $Oxfffffff5, eax

] S lcc2 <do_fork+0xe2>
nov $Oxf ffff000, Yeax
and Yesp, Yeax

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do fork>:

push Y%ebp

push %edi

nov Yeax, Yedi

push Yesi

XOor %esi , Yesi

push %ebx

sub $0x24, Yesp

nov Yecx, Yebx

nov Yedx, Ox10(Yesp)

cal | 1bf 2 <do_f or k+0x12>
nov Yeax, Yebp

t est Yebp, Yebp

novV $Oxfffffff5, eax

] S lcc2 <do_fork+0xe2>
nov $Oxf ffff000, Yeax
and Yesp, Yeax

2

Copy the original instruction

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do_fork>: Copy of original instruction
Int3/breakpoint Push %ebp
push %edi

nov Yeax, Yedi

push Yesi

XOor %esi , Yesi

push %bx Probe

sub $0x24, Yesp

nov Yecx, Yebx handler

nov Yedx, Ox10(Yesp)

cal | 1bf 2 <do_f or k+0x12>

nov Yeax, Yebp

t est Yebp, Yebp

novV $Oxfffffff5, eax

] S lcc2 <do_fork+0xe2>

nov $Oxf ffff000, Yeax

and Yesp, Yeax

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do fork>:

Copy of original instruction

Push %bp
push Yedi -
nov Yeax, Yedi

push Yesi

XOor %esi , Yesi

push %bx Probe
sub $0x24, Yesp

nov Yecx, Yebx handler
nov Yedx, Ox10(Yesp)

cal | 1bf 2 <do_f or k+0x12>

nov Yeax, Yebp

t est Yebp, Yebp

novV $Oxfffffff5, eax

] S lcc2 <do_fork+0xe2>
nov $OxfffffO00, Yeax
and Yesp, Yeax

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do fork>:

Int3/breakpoint

push
nov
push
XOor
push
sub
nov
nov
cal |

Yedi

Yeax, Yedi

%esi

%esi , Yesi

Yebx

$0x24, %esp

Yecx, ¥ebx

%edx, Ox10(Y%esp)
1bf 2 <do_f or k+0x12>
Yeax, Yebp

%ebp, Y&bp
$OxFffffff5, Yeax
lcc2 <do_fork+0xe2>
$OxfffffO00, ¥eax
Yesp, Yeax

Probe
handler

Copy of oriﬁinal instruction

iIngle step
original
Instruction

Basic Kprobes Mechanism

Disassembly of do_fork()->kernel/fork.c

<do_f or k>: Copy of original instruction

Int3/breakpoint Push %ebp

Yeax, Yedi

%esi

%esi , Yesi

%ebx

$0x24, %esp
Yecx, Yebx

ke dx, 0x10(Y%esp)
cal | @<do fork+0x12>
nov Yeax, .
t est Yebp, Yebp
novV SOxXfffffff5, Vims

Probe handler

j s lcc2 <do_fork+0xe2> a
yoy DRI G, b Continue executing
and Yesp, Yeax

next instruction

