
p u b l i s h i n g s e r v i c e s

S C R I P T O R I U M

Scriptorium Publishing Services, Inc.
P.O. Box 12761, Research Triangle Park, NC 27709-2761

919-481-2701 or sales@scriptorium.com
http://www.scriptorium.com

p u b l i s h i n g s e r v i c e s

S C R I P T O R I U M

Scriptorium Publishing Services, Inc.
P.O. Box 12761, Research Triangle Park, NC 27709-2761

919-481-2701 or sales@scriptorium.com
http://www.scriptorium.com

Integrating XML and FrameMaker

It sounds too good to be true: store information in an application-
independent, platform-independent format and then render that
information through the software of your choice. XML does, in
theory, deliver on this promise, but implementation is rarely as
straightforward as you might hope. As soon as you choose a
publishing tool, your workflow is constrained by that tool’s specific
limitations, restrictions, and requirements. For example, XML
theoretically supports output in any language, including languages
that read from right to left (such as Hebrew and Arabic). Most
publishing software, however, is more limited; if your publishing
tool doesn’t support the target language, XML’s extensive language
support is irrelevant.

This white paper describes how to integrate XML-based content
with Adobe FrameMaker. FrameMaker is an excellent choice for
working with XML, but customizations are required to fully support
the importing and exporting of XML content.

This white paper assumes basic familiarity with XML and
structured authoring; for background information on those topics,
refer to the XML & Structured Authoring white paper.

http://www.scriptorium.com/papers.html
mailto:sales@scriptorium.com
http://www.scriptorium.com

Contents
Contents
FrameMaker overview . 3

Structured and unstructured FrameMaker . 3

Components of a structured FrameMaker solution 7

Starting points .10

The FrameMaker document model .13

FrameMaker customization. .22

Language support .22

Entities .23

Building document structures. .24

Resources and references .25

Contacting us. .26
Copyright © 2004 Scriptorium Publishing Services, Inc. page 2 of 26

FrameMaker overview
FrameMaker overview
Adobe FrameMaker is a powerful document processor especially
suited for long, technical documents, such as reference manuals,
user guides, and technical reports. Some feature highlights
include:

• Automatic management of page, chapter, and paragraph
numbering (such as figure captions)

• Flexible table editor

• Generation of tables of contents and indexes

• Support for cross-references

FrameMaker produces excellent print and PDF output. When
combined with XML, you can use FrameMaker as an XML
rendering engine, where you input information as completed
XML files and output print and PDF. You can also use
FrameMaker as an authoring tool, in which case you create
content in FrameMaker and then create XML files. In either case,
integrating FrameMaker and XML presents significant technical
challenges.

Structured and unstructured FrameMaker
When you install FrameMaker 7, you actually install two
products—structured FrameMaker and unstructured
FrameMaker. Unstructured FrameMaker is the traditional,
paragraph-based document processor. Structured FrameMaker
was called FrameMaker+SGML and licensed separately in
previous versions of FrameMaker. With version 7, unstructured
and structured FrameMaker are covered by a single software
license, and you can switch back and forth between the two
interfaces by changing a preference setting and restarting
FrameMaker (Figure 1).
Copyright © 2004 Scriptorium Publishing Services, Inc. page 3 of 26

Structured and unstructured FrameMaker
Figure 1: Changing from unstructured to structured FrameMaker

Your project requirements determine whether you need
unstructured or structured FrameMaker. You can produce XML
files from unstructured FrameMaker, but for most other XML-
related tasks, you must use structured FrameMaker, as shown in
the following table:

Unstructured FrameMaker allows you to create XML files from
your regular, paragraph-based information. You can use the
following methods to create XML files:

• FrameMaker’s built-in Save As XML functionality

• WebWorks Publisher (Standard or Professional)

Task Requires

Opening XML files in
FrameMaker

Structured FrameMaker

Exporting XML files from
FrameMaker

Unstructured or structured
FrameMaker

Importing and exporting
(round-tripping) XML

Structured FrameMaker

Validating content against a
predefined structure

Structured FrameMaker

Authoring with elements and
attributes

Structured FrameMaker

Creating a hierarchical set of
elements

Structured FrameMaker
Copyright © 2004 Scriptorium Publishing Services, Inc. page 4 of 26

Structured and unstructured FrameMaker
In either case, the XML file that’s produced contains a flat
sequence of tags with no organization of elements into higher-
level elements. The heading and body paragraphs are parallel to
each other, and are not grouped into a higher-level element. See
Figure 2.

Figure 2: Flat XML produced from unstructured FrameMaker

To create XML with hierarchical, nested elements, as shown in
Figure 3, you need to use structured FrameMaker. (For more
information about hierarchy, see Scriptorium Publishing’s
Structured Authoring and XML white paper.1)

<h2-head-2>Creating a login account</h2-head-2>

<b-body>The login account includes basic information,
such as a login name, and email address. When you create
a login account, your password is emailed to you to
verify your email address.</b-body>

<b-body>You can create a maximum of five login accounts
on one computer. When you reach the maximum, <b-bold>
Create New Membership</b-bold> is grayed out in the <b-
bold> Login</b-bold> menu. Contact Scrippyville technical
support for assistance.</b-body>

<b-body>You have the option of browsing through
Scrippyville without logging in. This means that you
don’t give Scrippyville your name, email address, and so
on; however, if you don’t create a login account and then
log in, you won’t be able to create a Friends list and
chat. For this reason, it’s important to create a login
account. Because membership is free, you don’t lose
anything if you decide later not to participate.</b-body>

1. For information about Structured Authoring and XML and the other resources mentioned in this white
paper, see “Resources and references” on page 25.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 5 of 26

Structured and unstructured FrameMaker
Figure 3: Hierarchical elements require structured FrameMaker

It’s possible to create attributes in unstructured FrameMaker, but
this requires you to set up special constructs, such as conditional
text or markers, to embed the attribute information. You would
then use special processing in WebWorks Publisher Professional
to create the attributes. WebWorks Publisher Standard and the
built-in Save As XML conversion cannot support this type of
complex transformation.

In structured FrameMaker, however, you can easily assign
attribute values to elements and transfer those attributes to XML
on conversion (Figure 4).

Figure 4: Attribute information in structured FrameMaker
and XML

<Section>

<Title>Creating a login account</Title>

<Para>The login account includes basic information,
such as a login name, and email address. When you
create a login account, your password is emailed to
you to verify your email address.</Para>

<Para>You can create a maximum of five login accounts
on one computer. When you reach the maximum,
<MenuItem>Create New Membership</MenuItem> is grayed
out in the <MenuItem>Login</MenuItem> menu. Contact
Scrippyville technical support for assistance.</Para>

<Para>You have the option of browsing through
Scrippyville without logging in. This means that you
don’t give Scrippyville your name, email address, and
so on; however, if you don’t create a login account
and then log in, you won’t be able to create a Friends
list and chat. For this reason, it’s important to
create a login account. Because membership is free,
you don’t lose anything if you decide later not to
participate.</Para>

</Section>

<Section HelpID = "4124" Id = "BAJJACCI">

...

</Section>
Copyright © 2004 Scriptorium Publishing Services, Inc. page 6 of 26

Components of a structured FrameMaker solution
The remainder of this white paper focuses on integration of XML
with structured FrameMaker, which enables you to create
element-based content. You can automatically assign formatting
to elements, and you can transfer information to and from XML.

Components of a structured FrameMaker solution
Setting up FrameMaker to support XML publishing is a
significant effort. At a minimum, you will need the following
components:

• Element definition document (EDD)

• Document type definition (DTD)

• Template file

• Read/write rules files

• Structured application definition (the listing of configuration
files)

The basic FrameMaker/XML integration is shown in Figure 5.

Figure 5: Configuring FrameMaker for XML support

Each of these components is discussed in more detail in the
sections that follow.

Element definition document (EDD) and document type
definition (DTD)

The EDD specifies the permitted (or required) structure of the
FrameMaker files and provides formatting information for each
element (Figure 6).

Read/write
rules

FrameMaker

EDD &
template

file XML

DTD

<Para>
<Para>
<Para>
Copyright © 2004 Scriptorium Publishing Services, Inc. page 7 of 26

Components of a structured FrameMaker solution
Figure 6: An element definition in an EDD

The document type definition (DTD) provides the equivalent
structure definitions for XML:

<!ELEMENT Code (#PCDATA | Emphasis | Strong |
Hypertext | Link)* >

Both EDDs and DTDs contain element definitions, attribute
definitions, and comments. The EDD also contains the following
additional components:

• Formatting information—implemented with references to tags
in a formatting template, or with information embedded in
the EDD itself. Even if you embed information, you will need
a formatting template for items such as master page layouts.

• Element type information—maps elements to FrameMaker
objects. For example, index markers must be defined as
marker object elements.

• Miscellaneous settings—provides some additional
information, such as the name of the structured application.

FrameMaker allows you to save an EDD as a DTD and vice versa.
You can create a complete EDD, export it as a DTD, and have the
files you need. If, however, you create the DTD first, you will
need to add FrameMaker-specific information (formatting and
element types) after you create the EDD from the DTD.

Template file

When you import an XML document into FrameMaker, you
specify that information should flow through a template file. The
template file contains structure definitions and formatting
information, so putting structured information through the file
results in a fully formatted, structured FrameMaker file. The
template file must be empty; you cannot put any content in the

Element type and name

Formatting rules
Structure definition
Copyright © 2004 Scriptorium Publishing Services, Inc. page 8 of 26

Components of a structured FrameMaker solution
body pages of the document. The easiest way to create a template
file is to import the EDD into the formatting template file and
save the result with a new name.

Read/write rules files

The read/write rules file controls conversion settings for XML
import and export. There is an entire read/write rules language
that lets you make changes to the default processing of structured
information. For example, you can use read/write rules to specify
output formats for graphics during conversion (Figure 7).

Figure 7: Excerpt from a read/write rules file

Structured application

A structured application is a specific implementation of
structured authoring (or, an “application of structure”). The term
application is often used to mean a specific piece of software, but
in structured FrameMaker, an application is a collection of
configuration files with a name.

You define the structured application in a special configuration
file, structapps.fm, which is found in the structure directory
inside the FrameMaker installation directory (for example,
C:\Program Files\Adobe\FrameMaker7.1\structure). Figure 8
shows an excerpt of a structapps.fm with a sample application
definition.

element "AnchoredFrame" {

is fm graphic element "AnchoredFrame";

writer facet default {

convert referenced graphics;

export to file "$(entity).gif" as "GIF";}

writer anchored frame {

 export dpi is 150;

 export to file "$(entity).gif" as "GIF";}

 }
Copyright © 2004 Scriptorium Publishing Services, Inc. page 9 of 26

Starting points
Figure 8: Excerpt from a structured application definition file

At a minimum, the structured application must specify the
application name, location of the DTD file, the template file
(which also contains the structure definitions from the EDD), and
the read/write rules file.

FrameMaker ships with a few default structured applications,
including an implementation of DocBook, an open standard for
technical documentation. A few vendors offer commercial
applications, such as the DocFrame implementation from
Scriptorium Publishing. If such a solution is a good fit for your
content, you may be able to reduce the amount of development
time required by building on an existing implementation.

Starting points
The complexity of the XML-FrameMaker integration depends on
your starting point—what format are your current files in and
what, if any, requirements have already been defined for the
structure? The most common starting points, listed here in order
of difficulty, are as follows:

• Unstructured FrameMaker to structured FrameMaker

• Word to structured FrameMaker

• XML-based authoring with FrameMaker as the rendering tool
Copyright © 2004 Scriptorium Publishing Services, Inc. page 10 of 26

Starting points
For a detailed discussion of the high-level implementation
process, refer to the Scriptorium Publishing white paper,
Managing Implementation of Structured Authoring.

Unstructured FrameMaker to structured FrameMaker

Moving from unstructured FrameMaker to structured
FrameMaker requires you to create an EDD that matches the
implied structure in your FrameMaker files. See Figure 9, which
shows the structure extracted from a lesson plan.

Figure 9: Extrapolating structure from unstructured FrameMaker
files

If you have used a formatting template consistently with few or
no overrides, conversion of the unstructured files is simplified.

Implementation in FrameMaker requires the following basic
steps:

1. Review existing files and extrapolate structure from them.

2. Create an EDD that describes the document structure.

3. Add formatting information to the EDD, either by referencing
template components or by embedding formatting in the
EDD.

4. Convert unstructured documents to structure.

5. Create scripts to automate cleanup of common conversion
problems (deleting extra paragraph tags used as graphic
anchors, for example).

Lesson 1: Zoo maintenance
In this lesson, students will learn:
• Zoo maintenance types
• Working with animals
• Cleaning cages safely
• Handling inquisitive visitors

Have the following items ready:
• Zoo maps
• Pictures of injuries caused by lions
• Bleach and buckets
• Videotape of misbehaving visitors

Lesson

Objectives

Resources

Lesson

Title

ObjList

Resources

Objective

Objective

Objective

Objective

Item

Item

Item
Copyright © 2004 Scriptorium Publishing Services, Inc. page 11 of 26

http://www.scriptorium.com/papers.html

Starting points
Structured FrameMaker is a superset of unstructured
FrameMaker, so the document model used in unstructured
FrameMaker will map to structured FrameMaker. This simplifies
conversion from unstructured FrameMaker. Conversion difficulty
is increased by the following factors:

• Formatting overrides and inconsistent/underdeveloped
templates. In structured FrameMaker, you must account for
all authoring possibilities ahead of time; authors cannot create
elements on the fly. It is difficult to convert files to structure
when the source files use a poorly implemented template,
have significant overrides, or use different (author-created)
tags in each file.

• Inconsistent or absent document organization.

• Complex, manual formatting (for example, a single table that’s
been modified with custom ruling and shading to look like
two tables with a gutter in between them).

• Metadata required in the structured files for which there is no
equivalent in the unstructured files. A common example is
that generic sections (using a Heading2 tag for the title)
become several different types of sections in the structure. It
may be impossible to map a single paragraph tag to a
Reference, Procedure, or Concept element depending on the
type of information in the section.

• Documents with multiple flows. In structured FrameMaker,
each flow has its own structure. You cannot associate
information in different flows. For example, if you set up an
instructor guide with a Student flow and an Instructor flow
side by side, the two flows do not have any relationship,
except that they are positioned on each page to look related.

• Formatting “cheats” where the document’s visual appearance
is different from the underlying components. For example,
tables are often used for nontabular data, such as bulleted
items in multiple columns or one table with custom ruling
and shading to mimic two side-by-side tables. These work-
arounds cause problems when you attempt to process the
structure later.

If your source files are in unstructured FrameMaker, you need
not worry about product-specific issues such as language support
(any language you’re using in unstructured FrameMaker is also
supported in structured FrameMaker).
Copyright © 2004 Scriptorium Publishing Services, Inc. page 12 of 26

The FrameMaker document model
Conversion from any unstructured word processor format to a
structured environment is challenging, but the close relationship
between unstructured and structured FrameMaker make that
conversion slightly easier.

Word to structured FrameMaker

Like unstructured FrameMaker, Microsoft Word is a word
processor. Converting Word files to structured FrameMaker
requires the same basic steps as conversion of unstructured
FrameMaker files. There are, however, some additional
complications:

• You cannot use a Word template as a basis for formatting in
structured FrameMaker, so you need to create a FrameMaker
formatting template.

• Conversion from Word into structured FrameMaker is more
complex than conversion from unstructured FrameMaker.
You can use scripts for pre- or post-processing files during
conversion to reduce manual cleanup on the files.

• Word’s table model is quite different from FrameMaker’s. For
example, Word permits nested tables and tables that do not
follow a regular grid; FrameMaker does not.

• Word macros do not convert into FrameMaker.

Word files with a template and consistent styles are much easier
to convert than files that use the Normal style with ad hoc
formatting.

Predefined XML structure to structured FrameMaker

If you are required to adapt structured FrameMaker to use an
existing XML DTD or schema, you can expect to have significant
implementation challenges. Structured FrameMaker, like all
publishing tools, has a specific document model. If the document
model described in the DTD does not match the FrameMaker
document model, you may need to do considerable programming
work to make the two models compatible. The FrameMaker
document model is described in the section that follows.

The FrameMaker document model
Like any publishing tool, FrameMaker has layout limitations. If
your structure does not match the default FrameMaker
document model, you may be able to customize FrameMaker
(see page 22), but expect implementation costs to skyrocket.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 13 of 26

The FrameMaker document model
Tables

FrameMaker has a very powerful, flexible table editing feature.
XML, however, has no limitations whatsoever on the table
structures. Some of the FrameMaker requirements include the
following:

• A table cannot occur inside another table.

• Each row in a table must have the same number of columns.
You cannot create an irregular table, except by straddling
cells.

• Tables are always defined row by row, never column by
column.

• Each table can have only one table body section.

Out of the box, FrameMaker supports the CALS table model, a
standard for structured tables. If your tables are set up using
CALS structure, you should be able to process them successfully,
subject to the limitations described here. For more details about
how FrameMaker handles CALS tables by default, refer to
Appendix A of the Structure Applications Developer’s Guide, an
online manual that is installed with FrameMaker.

Object elements

XML does not make any distinction between block elements
(paragraphs), inline elements (text ranges), graphic elements,
and so on. In FrameMaker, your structure definitions must
specify the type of element being created. For example, you must
explicitly specify that the CrossRef element is a cross-reference
object. See Figure 10.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 14 of 26

The FrameMaker document model
Figure 10: Object elements require special definitions in the EDD

Most elements are container elements. A container element is an
element that allows text or additional elements inside the
element. Container elements are used for paragraphs, text
ranges, and grouping elements (which may not contain text but
do have child elements). For tables, FrameMaker provides
additional specialized container element types.

The elements that require special handling are:

• System variables

• Cross-references

• Table components: table, table heading, table body, table
footing, table row, table cell, and table title

• Rubi groups (used mainly in Japanese publishing)

• Markers

• Graphics

• Equations

FrameMaker defines a special class of elements, called object
elements, which are not permitted to have child elements or
contain text. System variables, cross-references, markers,
graphics, and equations are all object elements. Object elements
can have associated attributes, but the elements cannot contain
child elements or text.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 15 of 26

The FrameMaker document model
You can work around these limitations by customizing your
structured application files, but they do increase the complexity
of the implementation. For instance, FrameMaker expects the
following structure for an index marker by default:

<IndexEntry text="index entry text"/>

You might, however, have XML where the IndexEntry element
has text:

<IndexEntry>index entry text</IndexEntry>

You would need to modify the import process to move the index
information from the element text to the attribute text.
Furthermore, there is a 255-character limit on marker text in
FrameMaker.

The syntax used for index entries with multiple levels may also
present challenges. FrameMaker embeds the entire index marker
text in a single attribute. Primary and secondary entries are
separated with colons; multiple entries use colons, as shown
here:

<IndexEntry text=”bear:hibernating;hibernation”/>

If the XML structure uses different indexing syntax, you will
need to map it over to conform to FrameMaker’s expectations.

For all object elements, keep in mind that you cannot have child
elements inside the object.

Generating unique IDs for elements

ID attributes are commonly used to manage cross-references in
structured documents, and FrameMaker supports these IDs.
When you insert a cross-reference element and point to another
element, FrameMaker automatically creates an Id attribute with
a unique value for the target of the reference. The cross-reference
element automatically gets an Idref attribute with the same value
(Figure 11).
Copyright © 2004 Scriptorium Publishing Services, Inc. page 16 of 26

The FrameMaker document model
Figure 11: Structured cross-references

To implement structured cross-references in FrameMaker, you
must set up your structured definitions as follows:

• Require an Idref attribute for every element of type cross-
reference (Figure 10 on page 15).

• Permit an Id attribute for any element that could become the
target of a cross-reference (Figure 12).

FrameMaker will not automatically assign Id values to elements
as you create the elements; Id values are assigned only when the
specified element becomes the target of a cross-reference. Once
an Id value is assigned, it is reused for any subsequent cross-
references.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 17 of 26

The FrameMaker document model
Figure 12: Structure definitions for target element

Generated files

Generated files, such as the table of contents and index, are
unstructured in FrameMaker, even if the other files in the book
are structured.

You can set the read/write rules to drop the unstructured
generated files on export to XML. If you are processing the XML
to produce rendered output (such as HTML), you can re-create
the table of contents and index from the information present in
the XML files (that is, the various title elements for the table of
contents and the structured index entry elements for the index).

You can set the read/write rules in the structured application to
create a book file and chapter files during importing of XML
content. Once the content is in FrameMaker, you create new
generated files for the book. You can also write a FrameMaker
Developer’s Kit (FDK) client to automatically create the
generated files during the import process.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 18 of 26

The FrameMaker document model
Labeling versioned information with conditional text and
attributes

FrameMaker’s conditional text feature gives you the ability to
show and hide information based on the condition settings.

In version 7.0 and earlier, shown conditional text in the
FrameMaker files is exported to XML, and hidden conditional text
is deleted. The resulting XML files do not contain any
information about the conditional text labels.

In version 7.1, you can successfully round-trip conditional text
information with processing instructions. Figure 13 shows a
recipe with two conditions and how that conditional information
is maintained with processing instructions in the XML output.

Figure 13: Conditional text processing in a recipe (processing
instructions and conditional content in bold type)

Cream Cheese Icing
8 ounces light cream cheese, softened
1/2 cup butter or margarine, softened
4 cups confectioners sugar
1 tsp. vanilla extract
1 cup pecans, chopped

Combine the cream cheese and butter in a mixing bowl. Using a hand mixer,
beat the cream cheese and butter until fluffy.
Gradually blend in the confectioners sugar, then blend in the vanilla extract.
Stir in the pecans.

reduced_fat
condition

no_nuts
condition

<?Fm Condition no_nuts Red STRIKETHROUGH show?>
<?Fm Condition reduced_fat Blue SINGLE_UNDERLINE show?>
<Recipe>
<Name>Cream Cheese Icing</Name>
<IngredientList>
<Ingredient><Quantity>8 ounces</Quantity><Item>
<?Fm Condstart reduced_fat?>light <?Fm Condend reduced_fat?>cream
cheese</Item><PrepMethod>softened</PrepMethod></Ingredient>
<Ingredient><Quantity>1/2 cup</Quantity><Item>butter or margarine
</Item><PrepMethod>softened</PrepMethod></Ingredient>
<Ingredient><Quantity>4 cups</Quantity><Item>confectioners sugar
</Item></Ingredient>
<Ingredient><Quantity>1 tsp.</Quantity><Item>vanilla extract
</Item></Ingredient>
<?Fm Condstart no_nuts?><Ingredient><Quantity>1 cup</Quantity>
<Item>pecans</Item><PrepMethod>chopped</PrepMethod>
</Ingredient><?Fm Condend no_nuts?>
</IngredientList>
<Instructions>
<Para>Combine the cream cheese and butter in a mixing
bowl. Using a hand mixer, beat the cream cheese and butter until
fluffy. </Para>
<Para>Gradually blend in the confectioners sugar, then blend in
the vanilla extract. </Para>
<?Fm Condstart no_nuts?><Para>Stir in the pecans.</Para>
<?Fm Condend no_nuts?>
</Instructions>
</Recipe>
Copyright © 2004 Scriptorium Publishing Services, Inc. page 19 of 26

The FrameMaker document model
We recommend that you avoid “double-tagging” text with more
than one condition if possible; it can make processing the XML
very complicated.

Another option for versioning information is to use element
attributes. Attributes are better integrated into the structure of
the document (Figure 14).

Figure 14: Using attributes for conditional information

Attributes are easier to process in XML than processing
instructions. However, FrameMaker does not currently support
showing and hiding information based on attribute values. If you
use attributes to label information as belonging to different
versions, you will need to develop a solution for displaying and
printing the different versions of the document. Here are some
options:

• If information is being created in XML, preprocess the XML
files with an Extensible Stylesheet Language (XSL) script that
strips content based on attribute values. For example, if you
have an Output attribute, you could remove any material that
has the OnlineOnly attribute value before you import the
content into FrameMaker for printing.

• Use a third-party plug-in for FrameMaker called Sourcerer,
which allows you to show and hide information based on
attribute values.

• Use FrameScript or the FDK to enable attribute-based
versioning.

• Export FrameMaker files to XML, process them to eliminate
information you don’t want, and re-import the processed file
for printing.

<Chapter>

<Para output="print">This book represents your first
step in the Scrippyville world.</Para>

<Para>Scrippyville provides a new way to experience
the Internet...</Para>

...

</Chapter>
Copyright © 2004 Scriptorium Publishing Services, Inc. page 20 of 26

The FrameMaker document model
Element sequence

You can process an XML source document and produce rendered
documents (perhaps in HTML) in which information is
presented in a different sequence from the original XML file.
FrameMaker can interpret and format element information, but
as a general rule, the elements need to be in the same order as
the page-based presentation. If the element sequence in your
source XML files does not match the required sequence,
preprocess the XML file to create a file with the needed element
order and then import the processed file for printing.

Formatting issues

In the FrameMaker EDD, you use context rules to define
formatting for elements. The context rules let you specify that a
single element uses different formatting based on its position
(context) in the structure (Figure 15).

Figure 15: Context rule example

Context rule syntax lets you check for a particular parent,
ancestor, or ancestor sequence and apply formatting based on the
match. You can also use sibling rules; for example, a rule applies
formatting based on whether the current element is the first
Copyright © 2004 Scriptorium Publishing Services, Inc. page 21 of 26

FrameMaker customization
sibling. Context rules are more limited than what’s available in
the XSL used for processing XML. Context rules do not let you
assign formatting based on descendant elements. The sibling
rules are also more limited than in XSL.

FrameMaker customization
In addition to FrameMaker’s built-in features, there are several
ways to customize default behavior. These range from
inexpensive plug-ins to API programming. The FDK enables
programmers to make extensive changes to default behavior and
to write custom code to work around application limitations.
Although the FDK software is free, FDK programming projects
are expensive. Where possible, we recommend accommodating
FrameMaker’s default behavior to reduce configuration costs.

Two scripting languages, FrameScript and FrameAC, provide
easier access to FDK functions. The FDK supports deeper, more
complex customizations, but for many requirements,
FrameScript or FrameAC provides an inexpensive alternative to
FDK programming.

Language support
XML uses the Unicode character set. The goal of Unicode is to
provide a single character set encoding that covers all the
languages in the world. This includes the Latin alphabet (English
and most Western European languages), Cyrillic alphabet
(Russian and other Eastern European languages), character-based
languages (such as Japanese, Chinese, and Korean), and
languages that read from right to left (Hebrew and Arabic).

FrameMaker uses specific character sets, such as Latin1 (Western
European languages) and Shift-JIS (Japanese). It does not have
Unicode support. As a result, language support in FrameMaker is
more limited than in XML. FrameMaker supports the following
language groups:

• English and Western European languages (French, German,
Italian, Spanish, Norwegian, and so on)

• Double-byte languages (Japanese, Korean, simplified Chinese,
and traditional Chinese)

FrameMaker supplies dictionaries for about two dozen languages;
for a list, refer to the Adobe web site. In addition to the officially
supported languages, it’s possible to configure FrameMaker to
Copyright © 2004 Scriptorium Publishing Services, Inc. page 22 of 26

Entities
process additional languages, such as Russian, Polish, Greek, and
Turkish. FrameMaker will not render any bidirectional or right-
to-left languages, such as Arabic or Hebrew.

Adobe has acknowledged that full Unicode support is a
significant issue for FrameMaker. However, the company has not
specified whether or when such support might be implemented.

Entities
In XML, an entity is a placeholder. Entities can be placeholders
for text; system entities are references to external files. Entities
are most often used for three different types of information:

• Graphics

• XML fragments

• Text fragments (such as copyright statements or other often-
repeated text)

When working with FrameMaker, each of these entity types is
handled differently.

Graphics

FrameMaker uses an object element for referenced graphics.
When you export to XML, the graphic element contains a
reference to an entity name in an attribute, as shown in the
following example (attributes other than entity have been
truncated, as indicated by the ellipsis):

<ImportedGraphic entity = "ImportedGraphic1" .../>

At the top of the XML output file, you will find a definition for the
entity:

<!ENTITY ImportedGraphic1 SYSTEM "ImportedGraphic14.gif"
NDATA gif>

This type of entity is an unparsed entity reference. The entity is
unparsed because when the content is displayed as XML, the
entity name is not replaced with the entity definition itself.

XML fragments

You can use entities to refer to external files that are parsed. In
this case, you reference the entity in your main XML flow, as
shown here:

<Book>

&ch1;

</Book>
Copyright © 2004 Scriptorium Publishing Services, Inc. page 23 of 26

Building document structures
At the top of the XML file, you will find an entity definition
for ch1:

<!ENTITY ch1 SYSTEM "file01.xml">

When you export a structured book from FrameMaker to XML,
the default handling is to create a system entity for each file in
the book.

On import from XML, entities are not used to generate book
component files. Instead, you must specify which elements will
start new files in the read/write rules:

put element "Chapter" in file "ch.fm";

put element "Appendix" in file "app.fm";

put element "Glossary" in file "gloss.fm";

You can also use processing instructions to specify where to
begin a new file and what file name to use.

Building document structures
Inside FrameMaker, the EDD controls document structure, just as
a DTD or schema controls structure in XML files. There are two
ways to create the EDD:

• If you have an existing DTD, you can import the DTD into
FrameMaker to create an EDD.

• You can create the EDD inside FrameMaker.

Conversion of schema files into EDDs is not supported in
FrameMaker, so if you have a schema file, you will need to
convert it to a DTD and then import the DTD into FrameMaker.

Schema files provide much more extensive datatyping than DTDs
or EDDs do. For example, you can specify that a Year field must
contain only four digits. This close control over content is not
possible with DTD or EDD files.
Copyright © 2004 Scriptorium Publishing Services, Inc. page 24 of 26

Resources and references
Importing a DTD

If you have a DTD already defined for your document structures,
you can open the DTD in FrameMaker and convert it to an EDD.
This process usually works fairly well, but there are some
limitations:

• FrameMaker does not have a feature equivalent to parameter
entities, which allow reuse of structure definitions and
attribute lists in the DTD. In the EDD, parameter entities are
converted to plain text.

• If the DTD uses characters not supported in FrameMaker,
conversion errors will occur.

Creating structure definitions in FrameMaker

You can create structure definitions in a FrameMaker EDD and
then export this EDD as a DTD. FrameMaker permits several
constructs in EDDs that are legal in SGML DTDs but not in XML
DTDs. The following should not be used in an XML workflow:

• Inclusions

• Exclusions

• Ampersand connector (&)

• Structure definitions that require text and other elements,
such as:

<TEXT>,Emphasis

For XML, you must substitute the following:

(<TEXT>|Emphasis)*

If you create your structure definitions in FrameMaker, you must
keep the XML limitations in mind to ensure that the EDD will
export to an XML DTD without errors.

Resources and references
For additional information, try one of these resources:

• Structure Application Developer’s Guide (in the OnlineManuals
folder of the FrameMaker installation directory) provided by
Adobe

• FrameMaker 7: The Complete Reference (ISBN 0072223618),
available at www.scriptorium.com or www.amazon.com,
written by Scriptorium Publishing employees and published
by Osborne/McGraw-Hill
Copyright © 2004 Scriptorium Publishing Services, Inc. page 25 of 26

http://www.scriptorium.com/books/fm7cr.html
http://www.amazon.com/exec/obidos/ASIN/0072223618/scriptoriumpubli/104-9049539-9444768

Contacting us
• XML & Structured Authoring white paper,
www.scriptorium.com/papers.html

• Managing Implementation of Structured Authoring white paper,
www.scriptorium.com/papers.html

• DocFrame information, www.docframe.com

• FrameMaker Developer’s Kit (FDK), partners.adobe.com/asn/
framemaker/fdk.jsp

• FrameScript, www.framescript.com

• FrameAC, www.4adobe.com/Server_Products/
Development_Applications/FrameAC/index.jsp

• Sourcerer, www.advantica.biz/sourcerer

• Language support in FrameMaker: www.adobe.com/support/
techdocs/a5c6.htm

• CALS table model information, www.oasis-open.org/specs/
a502.htm

• XSLT Programmer’s Reference (ISBN 1861005067), Michael Kay

• Unicode Consortium, www.unicode.org

• DocBook, www.docbook.org

• framers list, www.frameusers.com

• FrameSGML list, groups.yahoo.com/group/FrameSGML/

Contacting us
Scriptorium Publishing provides training and consulting services
for XML, FrameMaker, and structured authoring.

If you have any questions about Scriptorium Publishing Services,
Inc., contact:

Scriptorium Publishing Services, Inc.
P.O. Box 12761
Research Triangle Park, NC 27709-2761
919-481-2701
sales@scriptorium.com
http://www.scriptorium.com
Copyright © 2004 Scriptorium Publishing Services, Inc. page 26 of 26

http://partners.adobe.com/asn/framemaker/fdk.jsp
http://partners.adobe.com/asn/framemaker/fdk.jsp
http://www.adobe.com/support/techdocs/a5c6.htm
http://www.unicode.org
http://www.scriptorium.com/papers.html
http://www.scriptorium.com/papers.html
http://www.docframe.com
http://www.framescript.com
http://www.4adobe.com/Server_Products/Development_Applications/FrameAC/index.jsp
http://www.4adobe.com/Server_Products/Development_Applications/FrameAC/index.jsp
http://www.adobe.com/support/techdocs/a5c6.htm
http://www.adobe.com/support/techdocs/a5c6.htm
http://www.oasis-open.org/specs/a502.htm
http://www.oasis-open.org/specs/a502.htm
http://www.docbook.org
http://www.frameusers.com
http://groups.yahoo.com/group/FrameSGML/
http://www.scriptorium.com
http://www.advantica.biz/sourcerer
mailto:sales@scriptorium.com

	Contents
	FrameMaker overview
	Structured and unstructured FrameMaker
	Components of a structured FrameMaker solution
	Element definition document (EDD) and document type definition (DTD)
	Template file
	Read/write rules files
	Structured application

	Starting points
	Unstructured FrameMaker to structured FrameMaker
	Word to structured FrameMaker
	Predefined XML structure to structured FrameMaker

	The FrameMaker document model
	Tables
	Object elements
	Generating unique IDs for elements
	Generated files
	Labeling versioned information with conditional text and attributes
	Element sequence
	Formatting issues

	FrameMaker customization
	Language support
	Entities
	Graphics
	XML fragments

	Building document structures
	Importing a DTD
	Creating structure definitions in FrameMaker

	Resources and references
	Contacting us

