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NEFS file serving lets you share valuable data with potentially hundreds of client computers
on your company's network, but there are pitfalls. Suppose, for example, that your company has
purchased fifty disk-less workstations for your employees. The fact that the workstations have no hard
drives saved the company big money on purchasing, and the reliability is better because there are fewer
moving parts to fail. Sounds good in theory, right? But there are two big problems: First, how do you
distribute the NFS workload so that all the clients aren't hammering on the same server? Second
problem: what if a server fails? How do you prevent it from locking up dozens of workstations and
paralyzing your business?

The solution to the first problem is to distribute the work throughout several NFS servers.
This is known as load balancing. Rather than having one NFS server for fifty clients, you can have five
NFS servers, each of which provide data to ten clients, thus distributing the workload.

The solution to the second problem is to configure your NFS servers with Red Hat Cluster
Suite NFS failover service. Basically, all five servers have a stethoscope on each of the other four
servers, listening for a heartbeat. If a server fails, one of the remaining servers automatically takes on
its duties seamlessly and the client won't even know about the failure. This is known as failover and it
is accomplished by the Red Hat Cluster Suite's (RHCS's) Resource Group Manager, rgmanager.

This document will cover the basics of setting up and running the Red Hat Cluster Suite
and NFES so that your network is somewhat load-balanced and provides failover service. It assumes the
reader has a basic understanding of NFS. I'm going to use lots of specific examples that will be pretty
basic. In other words, I'm going to use baby-steps. I'm not going to expound on all the details and
options available to you, but I will explain what I'm doing along the way. To keep things simple, I'm
going to stick with my five-server example, although it should easily scale to sixteen servers.

The goal here is to show you how to do it by giving examples, rather than providing you
with a cryptic manual and forcing you to figure it out yourself. If you're looking for a detailed manual
on setting up RHCS, it may be found here:

http://www.redhat.com/docs/manuals/csefs/browse/rh-cs-en/
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Step 1 — Set your Goals and Design your Cluster

Take some time to carefully design your cluster before you invest time or money
implementing it. Design the network so that it provides enough redundancy to guarantee no
interruption of service. Make sure you buy hardware that provides scalability to allow your cluster to
grow as your company's needs grow. Work from your goals. Your goals should dictate how complex
your configuration gets.

Decide how many nodes to use

The first question you should ask is how big to make your cluster. In other words, how
many computers (“‘nodes”) to have in your cluster. There are two main issues to consider: fault
tolerance and workload.

The first issue, fault tolerance, relates to how much you can tolerate downtime. At the
heart of the issue is a special cluster requirement called quorum. Quorum is a rule that protects your
data. Let me explain with an example.

Suppose you have two network switches tied together with a single Ethernet cable and each
switch has half of your nodes. If someone accidentally unplugs that cable, you have a big problem:
instead of one big cluster, you suddenly have two smaller clusters. If these nodes have access to the
same data on shared storage, each of these two rogue clusters, without knowledge of the other, would
quickly corrupt the file system, unless they have some rule to prevent it. To make sure that never
happens, we only allow writing to the file system if there is a majority of nodes communicating. Any
rogue clusters that are cut off from the majority refuse to operate because they don't have a majority of
votes; they don't have quorum. In other words, at least (half + 1) of your nodes need to be
communicating normally.

Since a majority of nodes is needed for normal operation, if you have too few nodes in the
cluster, you're more likely to have down time. If your company rarely gets orders through the Internet,
a three node cluster will continue serving your data if one node fails, but if two out of three go down,
your cluster is down, and that may be fine for your business.

On the other hand, if every minute of downtime costs your company a million dollars, you
may want a cluster of sixteen-nodes so that your only down time would be in the rare event that eight
or more nodes fail. Right now, Red Hat only supports up to sixteen nodes in a cluster, although the
software can probably handle more.

By the way, we made a special exception for two-node clusters so they can continue
running if one node fails, but that has to be specially configured. There are also ways you can specify a
tie-breaker for two-node clusters.

The second issue to consider when choosing the size of your cluster is workload. Workload
relates to how much work is required of the cluster. If you have more nodes in your cluster, you can
distribute the workload between the additional servers and handle a heavier workload. For example, if
you're using your cluster for web serving, you probably want enough nodes to ensure that your web
servers don't get swamped by lots of Internet traffic when your company is “discovered”; customers
don't have much patience.
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Load Balancing Issues

You should also think about load balancing issues. If you're planning to serve NFS, ask
yourself why you want load-balanced NFS capabilities in the first place. If it's only to serve data to
web servers, that might be more efficiently done by leaving NES out of the picture altogether. Since
the rgmanager service can manage web servers as well as NFS servers, it may be better to forget NFS
and use a managed apache/httpd service on your cluster.

Next, determine if you need true load-balancing for your situation. With true load-
balancing, all requests are distributed equally between the servers, and all servers do the same amount
of work at any given time. Requests are distributed to the servers by a request “traffic-cop” known as a
Linux Virtual Server (LVS) router. This is known as NAT routing. The router must stand between
your client machines and the servers and this is known as a tier. Multiple tiers may be used reduce the
workload on the LVS router, and multiple LVS routers may be introduced for failover, but each tier
adds a layer of complexity. For more information, see the section on True Load Balancing below.

If you don't care about occasional server congestion, you can use a simple technique I call
round-robin pseudo load-balancing. With pseudo load-balancing, clients are split up equally between
the servers, and any client's individual requests are all handled by the same server. Individual servers
may still occasionally get swamped with requests since the requests themselves are not load-balanced.
For simple NFS applications, this might be acceptable.

For the sake of simplicity, I'll use pseudo load-balancing in this document.

Scalability

Design your cluster with scalability in mind. Setup your IP addresses and Virtual IP
addresses so there is room to add more.

Because of the way I've chosen my IP addresses, this example allows you to add new
servers to the cluster as desired. I've named my servers trin-10 through trin-14 and assigned them IP
addresses 192.168.0.10 through 14. You can easily add new servers, starting with trin-15 and assign
them IPs starting with 192.168.0.15 and have them working in the cluster with minimal effort.

For this document, the goal is only to provide basic NFS service to several client computers
with pseudo load-balancing and failover. I'll assume:

e Fifty disk-less NFS clients.

e Five NFS servers (called trin-10, 11, 12, 13, and 14) running Red Hat Enterprise Linux 4
(RHELA4) with static IP addresses 192.168.0.10 through 192.168.0.14.

e Basic NFS file serving through five virtual IP addresses 10.0.0.1 through 10.0.0.5.

e Pseudo load-balancing. Each of the five servers will be assigned one of the virtual IPs. DHCP
service can be set up on one of the servers to dynamically assign client IPs and distribute them
equally between the five Virtual IPs. Virtual IP 10.0.0.1 will service clients 1, 6, 11, 16, 21 and
so on. Address 10.0.0.2 will service clients 2, 7, 12, 17, 22, etc.

We'll manage our Virtual IPs with round robin DNS, which ordinarily may have
some disadvantages. In this case, it becomes more palatable because the Virtual IPs will be
managed and made highly available by Cluster Suite, so even if a single node goes down, its
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Virtual IP will be relocated to another node, and in theory, the VIPs should be always available.
e For failover, the Virtual IP of the failing server may be moved to any of the others. We can also
set up failover for the DHCP service.

Step 2 — Design and Set up the Cluster Hardware

The first step is to design and set up your cluster of servers. For that you're going to need
some hardware. For my example, I'm using a configuration that consists of:

e Five NFS servers, each of which has an IDE boot drive (hda), at least one Network Interface
Card (NIC) providing device ethQ and a Fibre Channel Host Bus Adapter: QLogic QLA2310.
e A fibre-channel switch.
e Hard disk storage consisting of three LUNs (which look like SCSI drives sda,
sdb, sdc) connected to the fibre switch.
e Network switch or hub. In my example, any good high speed Ethernet switch will do.
e A Network Power Switch. In my example, I'll use an APC MasterSwitch Plus.

Network Connections

Each server is attached to a network switch with an Ethernet cable. The Ethernet
connections will be assigned static IPs which are shown in blue on the diagram. Later, we will assign
virtual IP addresses to them as well, shown in red.

The client connections are shown in red to indicate they're getting their NFS data from the
Virtual IP, even though they do have a physical connection. The diagram shows them connected
directly to the network switch, but in real life the network would probably be more complex.

Power Connections

All servers are plugged into a Network Power Switch (NPS) that also has an Ethernet
connection to the network switch. Power cables are shown in green. The NPS serves an important
role: if a node fails, the other nodes must be able to power-cycle (turn off and back on) the failed one to
prevent it from potentially damaging the shared storage.

Storage Connections

Each server has access to the same physical storage through the Fibre Channel switch. The
hard drives and servers plug into the switch with fiber-optic cables (shown in dark blue).

Here is a diagram of the hardware:
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Step 3 — Set up Red Hat Cluster Suite and Red Hat Global File System

In order to set up rgmanager failover service, you must first set up your servers in a
clustered environment. For that, we install Red Hat Cluster Suite (RHCS) 4.0. and Red Hat Global File
System (GFS) 6.1. Here are the basics:

Step 3a. Apply the necessary RPMs on all five servers
Your NFS servers should have the latest Red Hat Cluster Suite, Device Mapper, LVM2 and

Linux kernel RPMs installed. These RPMs should be added to all NFS servers to be clustered (called
nodes). Here is an example:

[root@trin-10 ~J# cd /usr/src/redhat/RPMS/i686/
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[root@trin-10 i686]# rpm -i kernel-2.6.9-42.EL.i686.rpm

Repeat this step for all five servers. After the new kernel is installed, reboot your servers to
pick up the new kernel. Next, we apply the RPMs for device-mapper, lvm2, and the Red Hat Cluster
Suite.

[root@trin-10 i686]# rpm -i device-mapper-1.02.07-4.0.RHEL4.1686.rpm

[root@trin-10 i686]# rpm -i lvm2-2.02.06-6.0.RHEL4

[root@trin-10 i686]# rpm -i ccs-1.0.7-0.1686.rpm cman-1.0.11-0.i686.rpm cman-kernel-smp-2.6.9-
45.2.i1686.rpm dlm-1.0.1-1.i686.rpm dIlm-kernel-smp-2.6.9-42.10.i1686.rpm fence-1.32.25-1.1686.rpm
GFS-6.1.6-1.1686.rpm GFS-kernel-smp-2.6.9-58.0.1686.rpm gulm-1.0.7-0.1686.rpm iddev-2.0.0-
3.1686.rpm lvm2-cluster-2.02.06-7.0.RHEL4.1686.rpm magma-1.0.6-0.1686.rpm magma-plugins-1.0.9-
0.1686.rpm perl-Net-Telnet-3.03-3.noarch.rpm rgmanager-1.9.53-0.i1686.rpm system-config-cluster-
1.0.27-1.0.noarch.rpm

Repeat this step for all five servers. This is just an example; the versions for these RPMs
are a moving target, so take the latest for your release.

NOTE: For RHELS and equivalent, you will need a different set of RPMs. For example, there is no
gulm, or magma, ccs, fence and cman are all combined into one “cman,” and dlm is built into the
kernel. For RHELS, you'll need openais.

Step 3b. Create your /etc/cluster/cluster.conf configuration file.

If you're running RHELS5 or RHELA4.5, you're in luck because there's a new web-based
cluster setup and management gui called “conga”. It will make your life a whole lot easier than before.

If you're not using conga, there is a graphical tool for first-time setup of a cluster called cs-
deploy-tool that automates most of the setup. There's another graphical tool called system-config-
cluster that allows you to configure your cluster even after it's been configured. To get to it from the
GUI, follow this path:

Applications -> System Settings -> Server Settings -> Cluster Management.

If you want to configure your cluster manually, edit /etc/cluster/cluster.conf with your
editor of choice. Here is the file I'll be using for my example:

<?xml version="1.0"7>
<cluster config_version="1" name="bob_cluster">
<cman/>
<clusternodes>
<clusternode name="trin-10">
<fence>
<method name="single">
<device name="trin-apc" nodename="trin-10"/>
</method>
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</fence>
</clusternode>
<clusternode name="trin-11">
<fence>
<method name="single">
<device name="trin-apc" nodename="trin-11"/>
</method>
</fence>
</clusternode>
<clusternode name="trin-12">
<fence>
<method name="single">
<device name="trin-apc" nodename="trin-12"/>
</method>
</fence>
</clusternode>
<clusternode name="trin-13">
<fence>
<method name="single">
<device name="trin-apc" nodename="trin-13"/>
</method>
</fence>
</clusternode>
<clusternode name="trin-14">
<fence>
<method name="single">
<device name="trin-apc" nodename="trin-14"/>
</method>
</fence>
</clusternode>
</clusternodes>
<fencedevices>
<fencedevice agent="fence_apc" ipaddr="192.168.0.9" login="apc" name="trin-apc" passwd="apc"/>
</fencedevices>
<fence_daemon post_fail_delay="0" post_join_delay="3"/>
</cluster>

If you're only planning to have two nodes, you'll need to do some more. Two-node clusters
are a special case that require some forethought. A bigger cluster will only run as long as it maintains
quorum, which means that there has to be a majority of nodes working in the cluster. So for a seven-
node cluster, there has to be at least four nodes or more running. With a two-node cluster, there is no
majority, so you have to decide between two possible solutions: The first solution is to “bend” the
quorum rules by adding expected_votes="1" two_node="1" to the <cman/> statement. The second
solution is to use a “quorum disk™ as a tie-breaker.

The first option, bending the rules, has a negative side-effect. If the two nodes lose contact
with each other, for whatever reason, they will both realize it at the same time and each will try to fence
the other. This can result in a shootout in which the fastest node Kkills the other to protect the data, and
depending on the kind of fencing you use, they may both end up dying.

The second option is to use a tie breaker. If a node starts experiencing communication
failures, there's no way to know whether the problem is with itself or with the other node, unless it has
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some other shared resource like a a special partition on shared storage or a second communication
channel. This is typically called a quorum disk, but that's a misnomer; you can set up a wide variety of
heuristics to determine which node will break the tie. Unfortunately, setting up a quorum disk is not
trivial; your best resource is to read the qdisk man page.

Step 3c. Send the cluster.conf to all nodes in the cluster.

Use some tool like scp to move the cluster.conf file to all of the servers. Once they have
their initial cluster.conf file, changes to the file are normally propagated by using the ccs_tool update

command, but that won't work until we have the cluster up and running. So for now, we'll do it by
hand:

[root@trin-10 ~J# scp /etc/cluster/cluster.conf root@trin-11:/etc/cluster/
[root@trin-10 ~J# scp /etc/cluster/cluster.conf root@trin-12:/etc/cluster/
[root@trin-10 ~J# scp /etc/cluster/cluster.conf root@trin-13:/etc/cluster/
[root@trin-10 ~J# scp /etc/cluster/cluster.conf root@trin-14:/etc/cluster/

Step 4. Bring up the cluster

The next step is to get your servers thinking as a team. In other words, you need to bring
up the cluster. The first time, we'll do this manually, but we'll also configure the systems to do this
automatically on startup.

You can find some cool tools out on the Internet that allow you to type the same command
simultaneously on all of your nodes. I use one called cssh (cluster-ssh). It's probably not the best and
it's not part of the regular installation, so for now I'll assume you'll just use regular ssh and a for loop.

Step 4a. Tell all servers to start the ccsd service.

This is the service that shares cluster.conf information in the cluster. Not only do we start
the service, we also set it up to start automatically every time the systems are rebooted.

[root@trin-10 ~]J# service ccsd start
[root@trin-10 ~]# for i in “seq 11 14" ; do ssh trin-$i “service ccsd start” ; done

Step 4b. Tell all servers to join in the cluster.

Now we use the cluster manager tool to get the servers talking to each other. As before, we
start the service and configure it to start automatically at startup.

[root@trin-10 ~]# service cman start
[root@trin-10 ~]# for i in “seq 11 14" ; do ssh trin-$i “service cman start” ; done

Now your systems are not just servers, they are nodes in a cluster.
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FYI: The cman service essentially executes this command: cman_tool join -w
Step 4c. Tell all nodes to start the “fenced” service.

This is the service that detects node failures and power cycles servers that have failed (an
act known as fencing). This is necessary to prevent damage to the filesystem.

[root@trin-10 ~J# service fenced start
[root@trin-10 ~]# foriin “seq 11 14" ; do ssh trin-$i “service fenced start” ; done

The fenced service essentially executes this command: fence_tool join -w

NOTE: for RHELS and equivalent, these three services are all combined into one called “cman.” So
for RHELS, you don't need steps 4a or 4c.

Step 4d. Tell all nodes to start the clvmd service.

This is the cluster LVM (Logical Volume Manager) daemon. Its job is to distribute LVM
metadata information between cluster nodes.

[root@trin-10 ~]# service clvind start
[root@trin-10 ~]# foriin “seq 11 14" ; do ssh trin-$i “service clvimd start” ; done

Step 4e. Start the GFS service.
This enables cluster locking and the GFS filesystem within the Linux kernel. The
necessary kernel modules will be loaded automatically at startup by the gfs service if you have a GFS

filesystem to be mounted in your /etc/inittab.

[root@trin-10 ~J# service gfs start
[root@trin-10 ~]J# foriin “seq 11 14" ; do ssh trin-$i “service gfs start” ; done

Step 5. Make sure your servers can see your shared storage

From one of the nodes, you need to prepare your volume group, physical volume, logical
volume, then format your GFS filesystem.

Step Sa. Make sure all nodes have the host bus adapter device drivers loaded.
The first step is to make sure your fibre channel host bus adapter device driver is loaded.

For my example, I'm using a QLogic QLA2310 host bus adapter, so I'll need the qla2300 and gqla23xx
device drivers.
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[root@trin-10 ~J# Ismod | grep qla

qla2300 124481 0O

gla2xxx 179297 8 qla2300

scsi_transport_fc 7873 1 gla2xxx

scsi_mod 121293 3 gla2xxx,scsi_transport_fc,sd_mod

If you don't see the device drivers, you may need to use “depmod -a” to resolve module
dependencies for your kernel and modprobe to load them.

Step Sb. Make sure all nodes can properly see the physical drives.

Now that our device drivers are loaded, we need to find out if they can actually see the hard
drives that are attached. The best way is by asking the Linux kernel. If the kernel can see the SCSI
drives, they should show up as sdX partitions in /proc/partitions:

[root@trin-10 ~]# cat /proc/partitions
major minor #blocks name
3 0 39082680 hda
1 104391 hdal
2 38973690 hda2
0 8388608 sda
16 8388608 sdb
32 8388608 sdc
48 8388608 sdd

O OO OO0 OO0 W W

I threw in a fourth SCSI device, sdd, just to make a point: make sure you know which hard
drives are which. You don't want to accidentally destroy someone else's data by repartitioning a hard
drive you assumed was yours. You can use the “pvs” and “pvdisplay” commands to see what physical
volumes exist and whether they are assigned to volume groups.

If your SAN isn't in the list, you may want to use the “dmesg” command to see if there are
any complaints from the Linux kernel. If there aren't any complaints, you may need to configure your
SAN, which is sometimes done through a web interface.

Step 6. Create your GF'S filesystem

Step 6a. Update the lvm configuration files on the servers.

If you switched from normal lvm to the clustered version, you may need to change your
lvm configuration a bit.

[root@trin-10 gfs]# vi /etc/lvm/lvm.conf

Locate the “global” section and change locking_type and locking_library as follows:
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locking_type = 2
locking_library = "liblvm2clusterlock.so"

NOTE: For RHELS, you should use locking_type = 3.
The changes need to be propagated to all the servers.
[root@trin-10 gfs]# vgchange -aly

[root@trin-10 gfs]# vgscan
[root@trin-10 gfs]# for i in “seq 11 15" ; do scp /etc/lvm/lvm.conf root@trin-$i:/etc/lvm/ ; done

Step 6b. Prepare the physical volumes for use.
This takes the place of using fdisk to partition the drives.

[root@trin-10 ~J# pvcreate /dev/sda
[root@trin-10 ~J# pvcreate /dev/sdb
[root@trin-10 ~J# pvcreate /dev/sdc

Step 6¢. Create a volume group for your GFS filesystem.
This groups all three physical volumes into a volume group.
[root@trin-10 ~]# vgcreate bobs_vg /dev/sda dev/sdb dev/sdc
Step 6d. Create a logical volume out of your volume group.
[root@trin-10 ~J# lvcreate -L 750G bobs_vg
Step 6e. Make your GFS filesystem within the logical volume.
[root@trin-10 ~J# gfs_mkfs -t bob_cluster:bobs_gfs -p lock_dIm -j 8 /dev/bobs_vg/lvol0

Here I specified eight (8) journals for the filesystem. There must be at least one journal per
server in the cluster. By specifying eight, I'm leaving myself room to add more servers in the future.

Step 6f. Edit /etc/fstab so that it mounts the GFS filesystem to be exported.

Using your editor of choice, edit the /etc/fstab file to automatically mount the new GFS
filesystem at system startup. In my fstab, ['ve got an entry that looks like this:

/dev/bob_vg/lvol0  /mnt/bob gfs defaults 00
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Step 6g. Mount the new filesystem and propagate the fstab to the other nodes.

[root@trin-10 ~]# mount -a
[root@trin-10 ~]# foriin “seq 11 15" ; do scp /etc/fstab root@trin-S$i:/etc/ ; done
[root@trin-10 ~]# foriin “seq 11 15" ; do ssh trin-$i “mount -a” ; done

Step 7 — Choose and Configure NFS Failover Service

There are two basic types of NFS failover: managed NFS service and Managed Virtual IPs
with RHCS's Global File System, GFS. You need to decide which you're going to use and there are
advantages and disadvantages to both. In either scenario, NFS clients continue to read and write files
on the NFS-mounted path without even detecting when a failure occurs.

With managed NFS service, rgmanager manages the entire NFS service, automatically
monitoring the service and relocating it to other nodes when node failures are detected.

With Managed Virtual IPs, NFS service is running on all of the nodes and rgmanager
monitors a virtual IP address. When node failures are detected, the Virtual IP address is moved from
node to node. This method is currently designed to work only in conjunction with GFS.

Which should you choose? If you need to export file-systems other than GFS, for example,
EXT3, on your shared storage, then you should use Managed NFS Service. If you need to maintain
your own /etc/exports file and export a mixture of filesystems where some are on shared storage and
some are on local storage, use Managed Virtual IPs.

If you're only going to be exporting GFS on shared storage you can use either method.
However, Managed NFS Service has two advantages: First, it's easier to use since rgmanager takes
care of the exports for you, so you don't need to manage the /etc/exports file. Second, if for some
reason the NFS service stops on one of your servers—which admittedly isn't likely—the rgmanager
will detect and handle the problem. With Managed Virtual IPs, if the NFS service stops, you may
never know it unless you check it periodically.

Managed NFS Service

This method of managing NFES failover is more powerful than using Managed Virtual IPs
because it may be used to manage any file-system NFS can export—provided the storage is shared
among the nodes in the cluster—whereas Virtual IPs should only be used with GFS. It is relatively
easy to set up because you can use the system-config-cluster GUI tool to manager your resources. It is
also easier to maintain because it automates the monitoring, starting and stopping of the NES service on
the servers. However, it is not as flexible as using Managed Virtual IPs because rgmanager manages
all of your NFS shares through the cluster configuration file (cluster.conf) rather than letting you pick
and choose with the /etc/exports file.

There are two ways to set up Managed NFS Service with rgmanager: manually or with the
system-config-cluster GUI tool.

Setting up Managed NFS Service using system-config-cluster:
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Step 7a. Create our failover domains for the servers

1.

(O8]

Start the system-config-cluster tool. From the Start menu:

Applications -> System Settings -> Server Settings -> Cluster Management

Under “Managed Resources” highlight “Failover Domains.”

Click the “Create a Failover Domain” button.

Next, you want to build a list of nodes that may run the service. To do that, use the “Available
Cluster Nodes” pulldown to add nodes to the “member node” box.

If you want the service to be prioritized, check the “Prioritized List” check-box. You may
then highlight the nodes listed in the “member nodes” box and click the “Adjust Priority”
buttons to select the order in which the failover should occur. The node with the highest
priority (priority 1) will be the initial node for running the service. If that node fails, the service
will be relocated to the node with the next higher priority (priority 2) and so forth. If multiple
nodes have the same priority, rgmanager will choose among them as it sees fit. Hit the Close
button when you are done.

Create five failover domains, one for each server. For each domain, set the priority to “1”

for the “home” server, and “2” for the other servers. That way, each server will be responsible for a
group of clients, and if that server fails, the service will be relocated to another server.

Step 7b. Create our resources

o % N o

Next, for each server, we create our resources, the NFS exports.

Under “Managed Resources” Highlight “Resources.”

Click the “Create a Resource” button.

Select resource type “GFS” and fill in Name, Mount Point, Device and Options
Click the “Create a Resource’ button.

10. Select “NFS Export” and fill in the name.
11. Click the “Create a Resource” button.
12. Select “NFS Client” and fill in the name, target, read-write or read-only and options.

Step 7c. Set up the NFS services

Now we have to set up the NFS services to be run on each of the servers.

13. Under “Managed Resources” highlight “Services.”
14. Click the “Create a Service” button and give the service a name. For example, “nfssvc.”

A “Service Management” pop-up window will appear.

15. Use the “Failover Domain” pulldown to select the domain you specified from step 4.
16. Under “Recovery Policy” select “Restart” or “Relocate.”
17. Click the button labeled “Create a new resource for this service.”



Copyright © Red Hat, Inc. 2006-2010 All rights reserved.

18. Use pull-down to select Resource Type “GFS.”

19. Enter Name (“bobfs1”’), Mount Point (“/mnt/bob”), Device (‘“/dev/bob_vg/lvol0”), and Options
(“acl”).

20. Put in all of your exports this way.

Step 7d. Save your changes and propagate to the cluster

21. When you are finished, save your changes with File->Save or by pressing <Ctrl+S>
22. Click the “Send To Cluster” button to send your new configuration to the nodes in the cluster.
23. You may then click on the “Cluster Management” tab and start the service.

When you're done, your /etc/cluster/cluster.conf file should be similar to the one shown in
the next section.

Setting up Managed NFS Service manually:

Step 7a. Add resource manager domains, resources and services to cluster.conf

Edit the /etc/cluster/cluster.conf file using your editor of choice and add a <rm> section that
defines what rgmanager should manage and how. For this example, we add the following lines to the
cluster.conf near the bottom, before the <fence_daemon> statement:

<rm>
<failoverdomains>

<failoverdomain name="nfsdomainl" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="1"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>

</failoverdomain>

<failoverdomain name="nfsdomain2" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="1"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>

</failoverdomain>

<failoverdomain name="nfsdomain3" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="1"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>

</failoverdomain>

<failoverdomain name="nfsdomain4" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
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<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="1"/>
<failoverdomainnode name="trin-14" priority="2"/>
</failoverdomain>
<failoverdomain name="nfsdomain5" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="1"/>
</failoverdomain>
</failoverdomains>
<resources>
<clusterfs device="/dev/bob_vg/lvol0" force_unmount="0" fstype="gfs"
mountpoint="/mnt/bob" name="bobfs1” options="acl"/>
<nfsexport name="NFSexports1"/>
<nfsclient name="client-1" options="rw" target="client- l.mycompany.com"/>
<clusterfs device="/dev/bob_vg/lvol0" force_unmount="0" fstype="gfs"
mountpoint="/mnt/bob" name="bobfs2" options="acl"/>
<nfsexport name="NFSexports2"/>
<nfsclient name="client-2" options="rw" target="client-2.mycompany.com"/>
<clusterfs device="/dev/bob_vg/lvol0" force_unmount="0" fstype="gfs"
mountpoint="/mnt/bob" name="bobfs3" options="acl"/>
<nfsexport name="NFSexports3"/>
<nfsclient name="client-3" options="rw" target="client-3.mycompany.com"/>
<clusterfs device="/dev/bob_vg/lvol0" force_unmount="0" fstype="gfs"
mountpoint="/mnt/bob" name="bobfs4" options="acl"/>
<nfsexport name="NFSexports4"/>
<nfsclient name="client-4" options="rw" target="client-4.mycompany.com"/>
<clusterfs device="/dev/bob_vg/lvol0" force_unmount="0" fstype="gfs"
mountpoint="/mnt/bob" name="bobfs5" options="acl"/>
<nfsexport name="NFSexports5"/>
<nfsclient name="client-5" options="rw" target="client-5.mycompany.com"/>
</resources>
<service autostart="1" domain="nfsdomainl" name="nfssvcl">
<ip address="10.0.0.1" monitor_link="1"/>
<clusterfs ref="bobfs1">
<nfsexport name="bobfs1">
<nfsclient ref="client-1"/>
</nfsexport>
</clusterfs>
</service>
<service autostart="1" domain="nfsdomain2" name="nfssvc2">
<ip address="10.0.0.2" monitor_link="1"/>
<clusterfs ref="bobfs2">
<nfsexport name="bobfs2">
<nfsclient ref="client-2"/>
</nfsexport>
</clusterfs>
</service>
<service autostart="1" domain="nfsdomain3" name="nfssvc3">
<ip address="10.0.0.3" monitor_link="1"/>
<clusterfs ref="bobfs3">
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<nfsexport name="bobfs3">
<nfsclient ref="client-3"/>
</nfsexport>
</clusterfs>
</service>
<service autostart="1" domain="nfsdomain4" name="nfssvc4">
<ip address="10.0.0.4" monitor_link="1"/>
<clusterfs ref="bobfs4">
<nfsexport name="bobfs4">
<nfsclient ref="client-4"/>
</nfsexport>
</clusterfs>
</service>
<service autostart="1" domain="nfsdomain5" name="nfssvc5">
<ip address="10.0.0.5" monitor_link="1"/>
<clusterfs ref="bobfs5">
<nfsexport name="bobfs5">
<nfsclient ref="client-5"/>
</nfsexport>
</clusterfs>
</service>
</rm>

This example essentially defines the managed NFS service.

Notice that the priorities for each failover domain are distributed between the servers. I'm
setting up pseudo load-balancing by making each failover domain an ordered (prioritized) list and using
the priority setting to distribute the workload between the servers.

The shared filesystem defined as path /mnt/bob is exported through NFS to clients named
“client-1" through “client-50" although they're not all shown here. The preferred node for running the
NFS service “nfssvcl” is “trin-10" since trin-10's priority is set higher than the other nodes in the
failover domain. If trin-10 fails, the rgmanager of the other nodes will detect the failure and relocate
the NFS service to one of the other nodes depending on circumstances. Likewise, the preferred node
for the second NFS export is trin-11.

Step 7b. Copy the cluster.conf file to all nodes in the cluster:

When the cluster was down, we had to use scp to copy the cluster.conf file to the servers.
Now that the cluster is running, we should do it the right way. This is accomplished with the use of
two tools, ccs_tool and cman_tool as shown below.

First, propagate your changed cluster.conf file to the cluster:

[root@trin-10 ~]# ccs_tool update /etc/cluster/cluster.conf

Next, determine the in-memory configuration version number.

[root@trin-10 ~]# cman_tool status | grep "Config version"
Config version: 1
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Update the version number to your newer version. Since the old version was 1, we tell it to
use version 2.

[root@trin-10 ~]# cman_tool version -r 2
Step 7c. Delete the /etc/exports file

If you want rgmanager to manage your NES exports, rgmanager should manage them all.
In other words, you shouldn't have other NFS exports in /etc/exports or NFS will get confused.

If you need a /etc/exports file to manage NFS exports that are not part of the clustered
filesystem, you should read further and use Managed Virtual IP Service instead.

Otherwise you can skip the next section and proceed to step 8.

Managed Virtual IP Service

This method of managing NFS failover is more flexible than using Managed NFS Service
because it allows you to hand-craft your NFS exports as you see fit. However, it is only designed to
work on GFS file systems. Using it for non-GFS file systems is not recommended.

In this configuration, you must ensure that /etc/exports file is in sync on all nodes, and that
nfsd is always running on all nodes (it's not monitored by the cluster; the service doesn't use
<nfsexport> in this case), and that the GFS file system is mounted before NFS is started. Therefore, it
requires more planning, maintenance and monitoring.

Step 7a. Add resource manager domains, resources and services to cluster.conf

The cluster configuration is much simpler than before. The failover domains are the same,
but the resources and services are simpler. Using your favorite editor, change the “rm” section of the
/etc/cluster/cluster.conf file to look something like this:

<rm>
<failoverdomains>

<failoverdomain name="igridnodes1" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="1"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>

</failoverdomain>

<failoverdomain name="igridnodes2" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="1"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>

</failoverdomain>

<failoverdomain name="igridnodes3" ordered="1" restricted="1">
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<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="1"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="2"/>
</failoverdomain>
<failoverdomain name="igridnodes4" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="1"/>
<failoverdomainnode name="trin-14" priority="2"/>
</failoverdomain>
<failoverdomain name="igridnodes5" ordered="1" restricted="1">
<failoverdomainnode name="trin-10" priority="2"/>
<failoverdomainnode name="trin-11" priority="2"/>
<failoverdomainnode name="trin-12" priority="2"/>
<failoverdomainnode name="trin-13" priority="2"/>
<failoverdomainnode name="trin-14" priority="1"/>
</failoverdomain>
</failoverdomains>
<resources>
<ip address="10.0.0.1" monitor_link="1"/>
<ip address="10.0.0.2" monitor_link="1"/>
<ip address="10.0.0.3" monitor_link="1"/>
<ip address="10.0.0.4" monitor_link="1"/>
<ip address="10.0.0.5" monitor_link="1"/>
</resources>
<service autostart="1" domain="igridnodes1" name="10.0.0.1">
<ip ref="10.0.0.1"/>
</service>
<service autostart="1" domain="igridnodes2" name="10.0.0.2">
<ip ref="10.0.0.2"/>
</service>
<service autostart="1" domain="igridnodes3" name="10.0.0.3">
<ip ref="10.0.0.3"/>
</service>
<service autostart="1" domain="igridnodes4" name="10.0.0.4">
<ip ref="10.0.0.4"/>
</service>
<service autostart="1" domain="igridnodes5" name="10.0.0.5">
<ip ref="10.0.0.5"/>
</service>
</rm>

Again, notice that the priorities for each failover domain are distributed between the
servers. I'm setting up pseudo load-balancing by making each failover domain an ordered (prioritized)
list and using the priority setting to distribute the workload between the servers. The first Virtual IP
service is set to run on the first server, trin-10, at startup because its priority is set higher (1) than the
priorities of the other servers (2). The second Virtual IP service is set to run on the second server, trin-
11, and so forth.
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Step 7b. Concoct your NFS exports file

First, you need to decide your NFS exports and put them in your /etc/exports file. For
example:

/mnt/bob/bin *(ro,insecure,no_root_squash)
/mnt/bob/sbin *(ro,insecure,no_root_squash)
/mnt/bob/usr/bin *(ro,insecure,no_root_squash)

Carefully choose your NFS export options with your company's security in mind.
Exporting to everyone (*) is generally not a good idea. Likewise, options like “insecure” and
“no_root_squash” might be okay if you're exporting directories like /bin or /usr/bin, but it's definitely

not a good idea for valuable company data. Remember, this is just an example.

Step 7c. Next, send your /etc/exports file to all servers in the cluster.

Since the NFS exports file is not managed by the cluster software in this configuration, you
need to ensure that it's the same for all of your NFS servers.

[root@trin-10 ~J# for i in “seq 11 14" ; do scp /etc/exports root@trin-$i:/etc/ ; done
Step 7d. Start your NFS service and set it up to start at boot time on all servers:

[root@trin-10 ~]# service nfs start
[root@trin-10 ~]# foriin “seq 11 14" ; do ssh trin-$i “service nfs start” ; done

Step 8 — Start the Resource Manager Service

Next, we need to start the Resource Manager service, rgmanager, on all servers. Like
before, we start the service and set it up to start at boot time.

[root@trin-10 ~]# service rgmanager start
[root@trin-10 ~J# foriin “seq 11 14" ; do ssh trin-$i “service rgmanager start” ; done

If we've done our jobs correctly, the rgmanager should start the NFS service or Virtual IP

service we set up earlier on the appropriate servers. If it doesn't work for some reason, we can look
in /var/log/messages to find out why.

Step 9 — Set up DHCP

It may be out of the scope of this document to set up DHCP, but somehow you need to get
your fifty NFS clients to use the five virtual IP addresses in a pseudo load-balanced way. One way you
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can do that is to configure DHCP on one of the servers to assign IP addresses to your disk-less NFS
clients and export their root directories.

For example, you can set up root partitions for each of your clients on your GFS filesystem.
You might have fifty entries in /etc/dhcpd.conf that look something like this:

host client] {
option root-path "/mnt/bob/client1/";
filename "/mnt/bob/bootlmage";
hardware ethernet 00:60:18:3F:00:01;
fixed-address 10.0.1.1;

}

host client2 {
option root-path "/mnt/bob/client2/";
filename "/mnt/bob/bootImage";
hardware ethernet 00:60:18:3F:00:02;
fixed-address 10.0.1.2;

}

(and so forth for every client)

When the clients are booted, they request their IP address from the DHCP server. Once
assigned, they can use some mechanism like tftp to load their kernel and NFS to mount their own root
directories Read/Write.

For static directories that can be read-only, all of your clients could access the same
physical directories through NFS and distribute the workload throughout the five servers by using the
five Virtual IPs. For example, /bin, /usr/bin, and /ust/lib can all be NFS mounts. In clientl's fstab
(file /mnt/bob/clientl/etc/fstab on the servers) we have something like:

/dev/nfs / nfs  defaults 00

none /proc proc defaults 00
10.0.0.1:/mnt/bob/bin.i686 /bin  nfs defaultsy;o 00
10.0.0.1:/mnt/bob/usrbin.i686 /usr/bin  nfs defaultsjo 00
10.0.0.1:/mnt/bob/usrlib.i686 /usr/lib  nfs defaults,ro 00

The fstab file would be the same for clients 6, 11, 16, 21, 26, and so forth, so every fifth
client would be using the same Virtual IP and therefore, the same physical server.

The fstab for client2 (/mnt/bob/client2/etc/fstab) is similar, but accomplishes pseudo load-
balancing by using a different Virtual IP which accesses the same data from a different server. Same
for clients 17, 22, 27, 32, etc. We have:

/dev/nfs / nfs  defaults 00

none /proc proc defaults 00
10.0.0.2:/mnt/bob/bin.i686 /bin  nfs defaults,ro 00
10.0.0.2:/mnt/bob/usrbin.i686 /usr/bin  nfs defaults,;o 00
10.0.0.2:/mnt/bob/usrlib.i686 /usr/lib  nfs defaults;o 00

And of course, clients 3, 8, 13, 18, 23, etc., would mount from 10.0.0.3. Clients 4, 9, 14,
19, 24 would all mount from 10.0.0.4 and 5, 10, 15, 20, 25 would all mount from 10.0.0.5. All fifty of
the clients would have similar configurations to accomplish the pseudo load-balancing.

I could have also specified clients 1 through 10 to use serverl, 11 through 20 to use server
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2, and so forth. I purposely chose to stagger them instead, and that goes back to the design of the
network. If you assign clients 1 through 10 to one department and 11 through 20 to another department
(thereby making it easier to find hardware problems down the road), our server workload may become
unbalanced due to the demands of the different departments. You don't want one department to
hammer a server hard while another department's server does nothing but sit and eat bonbons. It's
better for all departments to tax the servers equally. Which brings us to our next topic.

True Load-Balancing

What we've done so far is not true load balancing. We distributed the clients equally across
the NFS servers, but some of your servers may still be pounded by requests while others sit idle. If
your fifty workstations are divided among different departments, you might have one department
hammering one of the servers on the weekend (for example, production) while another server is
completely idle (for example, because the shipping department is closed for the weekend.)

If you really need to distribute the workload equally among the servers, you need true load-
balancing, and that adds another layer of complexity. The best way to achieve that is by using Linux
Virtual Server (LVS). LVS uses a mechanism called Network Address Translation (NAT) to route
requests from one IP address to another and that's what achieves true load-balancing.

With LVS, you have a second set of servers (called LVS routers) whose job is to equally
distribute the requests. Only one router is active at a time; additional routers are needed to provide
failover capabilities in case the first router fails. Our example diagram might look like this:
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With LVS, all requests come in to a central LVS server known as the Active Router. The
router decides which server to give the request to, based on one of several selectable methods. A
second router (called the backup router) monitors the network and takes over if the active router fails.

Red Hat Cluster Suite comes with a graphical LVS configuration tool called Piranha. It has
a web interface and requires php to run.

If you really want to get fancy, you can add a second tier of servers, one tier doing the NFS
file serving and the second tier serving that NFS data to the web. Of course, it gets harder to configure
and maintain these networks with each level of complexity.

Minimizing Downtime on Mission-Critical Servers

I've shown you how Red Hat Cluster Suite can provide failover capabilities in case a server
fails, but that's not the end of the story. If you look at the diagram of our cluster above, there are still
several points of failure. If your NFS servers are mission-critical, you may want to do everything in
your power to make sure there is no downtime.

There are several steps you can take to ensure your systems stay up barring a city-wide
power failure. It's out of the scope of this document to show you how to set those up, but I'd be remiss
if I didn't at least mention them. Most of them are hardware related.

e Redundant Power Supplies — Instead of having one power supply in a server, you have two.
This provides redundant power if one power supply fails.

e Uninterruptible Power Supply (UPS) — Provides temporary continuity of power if the
electricity goes out.

e Multipathing — The basic idea here is to have two SAN / Fibre switches with redundant cables.
That allows the data on the hard drives to be read even if one of the switches has a problem.

e RAID, Mirroring, etc. — The data on the hard drives is copied (mirroring) or arranged on the
disks to allow for data recovery in case a hard drive fails. RAID stands for Redundant Array of
Independent Disks.

e Network Redundancy — The idea here is to have more than one network switch or hub and
redundant NIC connections. That way, if a switch or hub fails, the cluster can still reach the
network through the other switch or hub. Also, if a NIC or a network cable fails in a server,
there is still a path from that server to the network through a second NIC and cable.

e Site Redundancy — The idea here is to have two different locations for your servers, maybe
even in different cities. That way, even if the entire site is taken down by some disaster or loss
of power, you'll have another site to back them up. This is sometimes known as Site Mirroring.

Where to go for help

At first this can all seem overwhelming, but once you get into it, it's not that hard.
Fortunately, there are places where you can go for help and to get questions answered. You can:

e Read the Cluster Project Page:
http://sources.redhat.com/cluster/wiki/
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Search the Cluster Suite Frequently Asked Questions:
http://sources.redhat.com/cluster/wiki/FAQ

Subscribe to the Linux Cluster Mailing List and ask there. For more information visit:
https://www.redhat.com/mailman/listinfo/linux-cluster
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